blob: d930efab3b130725f7a8dd891ef8cbad9dbc9da0 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// Digital core MBIST logic through External WB i/F. ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision : ////
//// 0.1 - 18 Oct 2021, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns / 1 ns
`include "uprj_netlists.v"
`define WB_MAP `30080_0000
`define GLBL_FUNC_MAP 'h3000_0000
`define MBIST1_FUNC_MAP 'h3000_1000
`define MBIST2_FUNC_MAP 'h3000_2000
`define MBIST3_FUNC_MAP 'h3000_3000
`define MBIST4_FUNC_MAP 'h3000_4000
`define MBIST5_FUNC_MAP 'h3000_5000
`define MBIST6_FUNC_MAP 'h3000_6000
`define MBIST7_FUNC_MAP 'h3000_7000
`define MBIST8_FUNC_MAP 'h3000_8000
`define GLBL_BIST_CTRL1 'h3000_0008
`define GLBL_BIST_CTRL2 'h3000_000C
`define GLBL_BIST_STAT1 'h3000_0010
`define GLBL_BIST_STAT2 'h3000_0014
`define GLBL_BIST_SWDATA 'h3000_0018
`define GLBL_BIST_SRDATA 'h3000_001C
`define GLBL_BIST_SPDATA 'h3000_0020
`define WB_GLBL_CTRL 'h3080_0000
`define WB_BANK_SEL 'h3080_0004
`define WB_CLK_CTRL1 'h3080_0008
`define WB_CLK_CTRL2 'h3080_000C
module user_mbist_test1_tb;
reg clock;
reg wb_rst_i;
reg power1, power2;
reg power3, power4;
reg wbd_ext_cyc_i; // strobe/request
reg wbd_ext_stb_i; // strobe/request
reg [31:0] wbd_ext_adr_i; // address
reg wbd_ext_we_i; // write
reg [31:0] wbd_ext_dat_i; // data output
reg [3:0] wbd_ext_sel_i; // byte enable
wire [31:0] wbd_ext_dat_o; // data input
wire wbd_ext_ack_o; // acknowlegement
wire wbd_ext_err_o; // error
// User I/O
wire [37:0] io_oeb;
wire [37:0] io_out;
wire [37:0] io_in;
wire gpio;
wire [37:0] mprj_io;
wire [7:0] mprj_io_0;
reg test_fail;
reg [31:0] read_data;
reg [31:0] writemem [0:511];
reg [8:0] faultaddr [0:7];
integer i;
event error_insert;
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
// would be the fast clock.
always #12.5 clock <= (clock === 1'b0);
initial begin
clock = 0;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(5, user_mbist_test1_tb);
$dumpoff;
end
`endif
initial begin
wb_rst_i <= 1'b1;
#100;
wb_rst_i <= 1'b0; // Release reset
#200; // Wait for reset removal
repeat (10) @(posedge clock);
$display("Monitor: Standalone User Test Started");
test_fail = 0;
// Remove Wb Reset
wb_user_core_write(`WB_GLBL_CTRL,'h1);
$dumpon;
$display("###################################################");
$display(" MBIST Test with Without Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 0
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h0
insert_fault(0,0,64'h01010101_01010101);
if(test_fail == 0) begin
$display("Monitor: Step-1: BIST Test without any Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-1: BIST Test without any Memory Error insertion test Failed");
end
$dumpon;
$display("###################################################");
$display(" MBIST Test with Single Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h1
//if(read_data[6:0] != 7'b0001101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x1
faultaddr[0] = 9'h10;
insert_fault(1,1,64'h15151515_15151515);
if(test_fail == 0) begin
$display("Monitor: Step-2: BIST Test with One Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-2: BIST Test with One Memory Error insertion test Failed");
end
$display("###################################################");
$dumpoff;
$display("###################################################");
$display(" MBIST Test with Two Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h2
//if(read_data[6:0] != 7'b0010101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x2
faultaddr[0] = 9'h10;
faultaddr[1] = 9'h20;
insert_fault(2,0,64'h25252525_25252525);
if(test_fail == 0) begin
$display("Monitor: Step-3: BIST Test with Two Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-3: BIST Test with Two Memory Error insertion test Failed");
end
$display("###################################################");
$display(" MBIST Test with Three Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h3
//if(read_data[6:0] != 7'b0011101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x3
faultaddr[0] = 9'h10;
faultaddr[1] = 9'h20;
faultaddr[2] = 9'h30;
insert_fault(3,1,64'h35353535_35353535);
if(test_fail == 0) begin
$display("Monitor: Step-4: BIST Test with Three Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-4: BIST Test with Three Memory Error insertion test Failed");
end
$dumpoff;
$display("###################################################");
$display(" MBIST Test with Fours Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h4
//if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4
faultaddr[0] = 9'h10;
faultaddr[1] = 9'h20;
faultaddr[2] = 9'h30;
faultaddr[3] = 9'h40;
insert_fault(4,0,64'h45454545_45454545);
if(test_fail == 0) begin
$display("Monitor: Step-5: BIST Test with Four Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-5: BIST Test with Four Memory Error insertion test Failed");
end
$dumpon;
$display("###################################################");
$display(" MBIST Test with Fours Address(Continous Starting Addrsess) Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h4
//if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4
faultaddr[0] = 9'h0;
faultaddr[1] = 9'h1;
faultaddr[2] = 9'h2;
faultaddr[3] = 9'h3;
insert_fault(4,0,64'h45454545_45454545);
if(test_fail == 0) begin
$display("Monitor: Step-5.2: BIST Test with Four Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-5.2: BIST Test with Four Memory Error insertion test Failed");
end
$display("###################################################");
$display(" MBIST Test with Fours Address(Last Addrsess) Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 0
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h4
//if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4
faultaddr[0] = 9'hF0;
faultaddr[1] = 9'hF1;
faultaddr[2] = 9'hF2;
faultaddr[3] = 9'hF3;
insert_fault(4,0,64'h45454545_45454545);
if(test_fail == 0) begin
$display("Monitor: Step-5.3: BIST Test with Four Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-5.3: BIST Test with Four Memory Error insertion test Failed");
end
$display("###################################################");
$display(" MBIST Test with Five Address Failure");
$display("###################################################");
// Check Is there is any BIST Error
// [0] - Bist Done - 1
// [1] - Bist Error - 1
// [2] - Bist Correct - 1
// [3] - Reserved - 0
// [7:4] - Bist Error Cnt - 4'h4
//if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4
faultaddr[0] = 9'h10;
faultaddr[1] = 9'h20;
faultaddr[2] = 9'h30;
faultaddr[3] = 9'h40;
faultaddr[4] = 9'h50;
insert_fault(5,1,64'h47474747_47474747);
if(test_fail == 0) begin
$display("Monitor: Step-5: BIST Test with Five Memory Error insertion test Passed");
end else begin
$display("Monitor: Step-5: BIST Test with Five Memory Error insertion test Failed");
end
$dumpon;
$display("###################################################");
$display(" MBIST Test with Functional Access, continuation of previous MBIST Signature");
$display("###################################################");
$dumpon;
fork
begin
// Remove the Bist Enable and Bist Run
wb_user_core_write(`GLBL_BIST_CTRL2,'h000);
// Fill Random Data
for (i=0; i< 9'h1FC; i=i+1) begin
writemem[i] = $random;
wb_user_core_write(`MBIST1_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST2_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST3_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST4_FUNC_MAP+(i*4),writemem[i]);
if(i < 9'h0FC) begin // SRAM5-SRAM8 are 1KB
wb_user_core_write(`MBIST5_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST6_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST7_FUNC_MAP+(i*4),writemem[i]);
wb_user_core_write(`MBIST8_FUNC_MAP+(i*4),writemem[i]);
end
end
// Read back data
for (i=0; i< 9'h1FC; i=i+1) begin
wb_user_core_read_check(`MBIST1_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST2_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST3_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST4_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
if(i < 9'h0FC) begin // SRAM5 - SRAM8 are 1KB
wb_user_core_read_check(`MBIST5_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST6_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST7_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST8_FUNC_MAP+(i*4),read_data,writemem[i],32'hFFFFFFFF);
end
end
// Cross-check Reducency address hold the failure address data
// Is last Error inserted address are 0x10,0x20,0x30,0x40
// So Address 0x1FC = Data[0x10], 0x1FD = Data[0x20]
// Address 0x1FE = Data[0x30], 0x1FF = Data[0x40]
// Check 2kb SRAM1
wb_user_core_read_check(`MBIST1_FUNC_MAP + (9'h1FC *4),read_data,writemem[9'h10],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST1_FUNC_MAP + (9'h1FD *4),read_data,writemem[9'h20],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST1_FUNC_MAP + (9'h1FE *4),read_data,writemem[9'h30],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST1_FUNC_MAP + (9'h1FF *4),read_data,writemem[9'h40],32'hFFFFFFFF);
// Check 2kb SRAM2
wb_user_core_read_check(`MBIST2_FUNC_MAP + (9'h1FC *4),read_data,writemem[9'h11],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST2_FUNC_MAP + (9'h1FD *4),read_data,writemem[9'h21],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST2_FUNC_MAP + (9'h1FE *4),read_data,writemem[9'h31],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST2_FUNC_MAP + (9'h1FF *4),read_data,writemem[9'h41],32'hFFFFFFFF);
// Check 2kb SRAM3
wb_user_core_read_check(`MBIST3_FUNC_MAP + (9'h1FC *4),read_data,writemem[9'h12],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST3_FUNC_MAP + (9'h1FD *4),read_data,writemem[9'h22],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST3_FUNC_MAP + (9'h1FE *4),read_data,writemem[9'h32],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST3_FUNC_MAP + (9'h1FF *4),read_data,writemem[9'h42],32'hFFFFFFFF);
// Check 2kb SRAM4
wb_user_core_read_check(`MBIST4_FUNC_MAP + (9'h1FC *4),read_data,writemem[9'h13],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST4_FUNC_MAP + (9'h1FD *4),read_data,writemem[9'h23],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST4_FUNC_MAP + (9'h1FE *4),read_data,writemem[9'h33],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST4_FUNC_MAP + (9'h1FF *4),read_data,writemem[9'h43],32'hFFFFFFFF);
// Check 1kb SRAM5
wb_user_core_read_check(`MBIST5_FUNC_MAP + (8'hFC *4),read_data,writemem[9'h14],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST5_FUNC_MAP + (8'hFD *4),read_data,writemem[9'h24],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST5_FUNC_MAP + (8'hFE *4),read_data,writemem[9'h34],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST5_FUNC_MAP + (8'hFF *4),read_data,writemem[9'h44],32'hFFFFFFFF);
// Check 1kb SRAM6
wb_user_core_read_check(`MBIST6_FUNC_MAP + (8'hFC *4),read_data,writemem[9'h15],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST6_FUNC_MAP + (8'hFD *4),read_data,writemem[9'h25],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST6_FUNC_MAP + (8'hFE *4),read_data,writemem[9'h35],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST6_FUNC_MAP + (8'hFF *4),read_data,writemem[9'h45],32'hFFFFFFFF);
// Check 1kb SRAM7
wb_user_core_read_check(`MBIST7_FUNC_MAP + (8'hFC *4),read_data,writemem[9'h16],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST7_FUNC_MAP + (8'hFD *4),read_data,writemem[9'h26],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST7_FUNC_MAP + (8'hFE *4),read_data,writemem[9'h36],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST7_FUNC_MAP + (8'hFF *4),read_data,writemem[9'h46],32'hFFFFFFFF);
// Check 1kb SRAM8
wb_user_core_read_check(`MBIST8_FUNC_MAP + (8'hFC *4),read_data,writemem[9'h17],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST8_FUNC_MAP + (8'hFD *4),read_data,writemem[9'h27],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST8_FUNC_MAP + (8'hFE *4),read_data,writemem[9'h37],32'hFFFFFFFF);
wb_user_core_read_check(`MBIST8_FUNC_MAP + (8'hFF *4),read_data,writemem[9'h47],32'hFFFFFFFF);
end
begin
// Loop for BIST TimeOut
repeat (200000) @(posedge clock);
// $display("+1000 cycles");
test_fail = 1;
end
join_any
disable fork; //disable pending fork activity
if(test_fail == 0) begin
$display("Monitor: Step-5: BIST Test with Functional access test Passed");
end else begin
$display("Monitor: Step-5: BIST Test with Functional access test failed");
end
$display("###################################################");
$finish;
end
wire USER_VDD1V8 = 1'b1;
wire VSS = 1'b0;
user_project_wrapper u_top(
`ifdef USE_POWER_PINS
.vccd1(USER_VDD1V8), // User area 1 1.8V supply
.vssd1(VSS), // User area 1 digital ground
`endif
.wb_clk_i (clock), // System clock
.user_clock2 (1'b1), // Real-time clock
.wb_rst_i (wb_rst_i), // Regular Reset signal
.wbs_cyc_i (wbd_ext_cyc_i), // strobe/request
.wbs_stb_i (wbd_ext_stb_i), // strobe/request
.wbs_adr_i (wbd_ext_adr_i), // address
.wbs_we_i (wbd_ext_we_i), // write
.wbs_dat_i (wbd_ext_dat_i), // data output
.wbs_sel_i (wbd_ext_sel_i), // byte enable
.wbs_dat_o (wbd_ext_dat_o), // data input
.wbs_ack_o (wbd_ext_ack_o), // acknowlegement
// Logic Analyzer Signals
.la_data_in ('0) ,
.la_data_out (),
.la_oenb ('0),
// IOs
.io_in (io_in) ,
.io_out (io_out) ,
.io_oeb (io_oeb) ,
.user_irq ()
);
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
force u_top.u_wb_host.u_buf_wb_rst.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_buf_wb_rst.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_buf_wb_rst.VGND =VSS;
force u_top.u_wb_host.u_buf_wb_rst.VNB = VSS;
force u_top.u_wb_host.u_buf_bist_rst.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_buf_bist_rst.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_buf_bist_rst.VGND =VSS;
force u_top.u_wb_host.u_buf_bist_rst.VNB = VSS;
force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VGND =VSS;
force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VNB = VSS;
force u_top.u_wb_host.u_delay1_stb0.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_delay1_stb0.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_delay1_stb0.VGND =VSS;
force u_top.u_wb_host.u_delay1_stb0.VNB = VSS;
force u_top.u_wb_host.u_delay2_stb1.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_delay2_stb1.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_delay2_stb1.VGND =VSS;
force u_top.u_wb_host.u_delay2_stb1.VNB = VSS;
force u_top.u_wb_host.u_delay2_stb2.VPWR =USER_VDD1V8;
force u_top.u_wb_host.u_delay2_stb2.VPB =USER_VDD1V8;
force u_top.u_wb_host.u_delay2_stb2.VGND =VSS;
force u_top.u_wb_host.u_delay2_stb2.VNB = VSS;
// MBIST1
force u_top.u_mbist1.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist1.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist1.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist1.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST2
force u_top.u_mbist2.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist2.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist2.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist2.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST3
force u_top.u_mbist3.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist3.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist3.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist3.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST4
force u_top.u_mbist4.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist4.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist4.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist4.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST5
force u_top.u_mbist5.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist5.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist5.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist5.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist5.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist5.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST6
force u_top.u_mbist6.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist6.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist6.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist6.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist6.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist6.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST7
force u_top.u_mbist7.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist7.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist7.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist7.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist7.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist7.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
// MBIST8
force u_top.u_mbist8.u_cts_wb_clk_b1.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_cts_wb_clk_b1.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_cts_wb_clk_b1.VGND =VSS;
force u_top.u_mbist8.u_cts_wb_clk_b1.VNB = VSS;
force u_top.u_mbist8.u_cts_wb_clk_b2.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_cts_wb_clk_b2.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_cts_wb_clk_b2.VGND =VSS;
force u_top.u_mbist8.u_cts_wb_clk_b2.VNB = VSS;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS;
force u_top.u_mbist8.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_a.VGND =VSS;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_a.VNB = VSS;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_b.VGND =VSS;
force u_top.u_mbist8.u_mem_sel.u_cts_mem_clk_b.VNB = VSS;
end
`endif
//-------------------------------------
// Insert user defined number of fault
// -----------------------------------
task insert_fault;
input [3:0] num_fault;
input fault_type; // 0 -> struck at 0 and 1 -> struck at 1
input [63:0] mbist_signature;
reg [31:0] datain;
reg [8:0] fail_addr1;
reg [8:0] fail_addr2;
reg [8:0] fail_addr3;
reg [8:0] fail_addr4;
integer j;
begin
repeat (2) @(posedge clock);
// Remove the Bist Enable and Bist Run
wb_user_core_write(`GLBL_BIST_CTRL2,'h000);
// Remove WB and BIST RESET
wb_user_core_write(`WB_GLBL_CTRL,'h001);
// Set the Bist Enable and Bist Run
wb_user_core_write(`GLBL_BIST_CTRL2,'h33333333);
// Remove WB and BIST RESET
wb_user_core_write(`WB_GLBL_CTRL,'h003);
fork
begin
// Check for MBIST Done
read_data = 'h0;
while (read_data[0] != 1'b1) begin
wb_user_core_read(`GLBL_BIST_STAT1,read_data);
end
// wait for some time for all the BIST to complete
repeat (1000) @(posedge clock);
// Check Is there is any BIST Error
// [0] - Bist Done
// [1] - Bist Error
// [2] - Bist Correct
// [3] - Reserved
// [7:4] - Bist Error Cnt
wb_user_core_read_check(`GLBL_BIST_STAT1,read_data,mbist_signature[31:0],32'hFFFFFFFF);
wb_user_core_read_check(`GLBL_BIST_STAT2,read_data,mbist_signature[63:32],32'hFFFFFFFF);
end
// Insert Error Insertion
begin
while(1) begin
repeat (1) @(posedge clock);
#1;
if(u_top.u_sram1_2kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram1_2kb.addr0 == faultaddr[0]) ||
(num_fault > 1 && u_top.u_sram1_2kb.addr0 == faultaddr[1]) ||
(num_fault > 2 && u_top.u_sram1_2kb.addr0 == faultaddr[2]) ||
(num_fault > 3 && u_top.u_sram1_2kb.addr0 == faultaddr[3]) ||
(num_fault > 4 && u_top.u_sram1_2kb.addr0 == faultaddr[4]) ||
(num_fault > 5 && u_top.u_sram1_2kb.addr0 == faultaddr[5]) ||
(num_fault > 6 && u_top.u_sram1_2kb.addr0 == faultaddr[6]) ||
(num_fault > 7 && u_top.u_sram1_2kb.addr0 == faultaddr[7])))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram1_2kb.din0 = u_top.mem1_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram1_2kb.din0 = u_top.mem1_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram1_2kb.din0;
end
if(u_top.u_sram2_2kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram2_2kb.addr0 == faultaddr[0]+1) ||
(num_fault > 1 && u_top.u_sram2_2kb.addr0 == faultaddr[1]+1) ||
(num_fault > 2 && u_top.u_sram2_2kb.addr0 == faultaddr[2]+1) ||
(num_fault > 3 && u_top.u_sram2_2kb.addr0 == faultaddr[3]+1) ||
(num_fault > 4 && u_top.u_sram2_2kb.addr0 == faultaddr[4]+1) ||
(num_fault > 5 && u_top.u_sram2_2kb.addr0 == faultaddr[5]+1) ||
(num_fault > 6 && u_top.u_sram2_2kb.addr0 == faultaddr[6]+1) ||
(num_fault > 7 && u_top.u_sram2_2kb.addr0 == faultaddr[7]+1)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram2_2kb.din0 = u_top.mem2_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram2_2kb.din0 = u_top.mem2_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram2_2kb.din0;
end
if(u_top.u_sram3_2kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram3_2kb.addr0 == faultaddr[0]+2) ||
(num_fault > 1 && u_top.u_sram3_2kb.addr0 == faultaddr[1]+2) ||
(num_fault > 2 && u_top.u_sram3_2kb.addr0 == faultaddr[2]+2) ||
(num_fault > 3 && u_top.u_sram3_2kb.addr0 == faultaddr[3]+2) ||
(num_fault > 4 && u_top.u_sram3_2kb.addr0 == faultaddr[4]+2) ||
(num_fault > 5 && u_top.u_sram3_2kb.addr0 == faultaddr[5]+2) ||
(num_fault > 6 && u_top.u_sram3_2kb.addr0 == faultaddr[6]+2) ||
(num_fault > 7 && u_top.u_sram3_2kb.addr0 == faultaddr[7]+2)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram3_2kb.din0 = u_top.mem3_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram3_2kb.din0 = u_top.mem3_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram3_2kb.din0;
end
if(u_top.u_sram4_2kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram4_2kb.addr0 == faultaddr[0]+3) ||
(num_fault > 1 && u_top.u_sram4_2kb.addr0 == faultaddr[1]+3) ||
(num_fault > 2 && u_top.u_sram4_2kb.addr0 == faultaddr[2]+3) ||
(num_fault > 3 && u_top.u_sram4_2kb.addr0 == faultaddr[3]+3) ||
(num_fault > 4 && u_top.u_sram4_2kb.addr0 == faultaddr[4]+3) ||
(num_fault > 5 && u_top.u_sram4_2kb.addr0 == faultaddr[5]+3) ||
(num_fault > 6 && u_top.u_sram4_2kb.addr0 == faultaddr[6]+3) ||
(num_fault > 7 && u_top.u_sram4_2kb.addr0 == faultaddr[7]+3)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram4_2kb.din0 = u_top.mem4_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram4_2kb.din0 = u_top.mem4_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram4_2kb.din0;
end
if(u_top.u_sram5_1kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram5_1kb.addr0 == faultaddr[0]+4) ||
(num_fault > 1 && u_top.u_sram5_1kb.addr0 == faultaddr[1]+4) ||
(num_fault > 2 && u_top.u_sram5_1kb.addr0 == faultaddr[2]+4) ||
(num_fault > 3 && u_top.u_sram5_1kb.addr0 == faultaddr[3]+4) ||
(num_fault > 4 && u_top.u_sram5_1kb.addr0 == faultaddr[4]+4) ||
(num_fault > 5 && u_top.u_sram5_1kb.addr0 == faultaddr[5]+4) ||
(num_fault > 6 && u_top.u_sram5_1kb.addr0 == faultaddr[6]+4) ||
(num_fault > 7 && u_top.u_sram5_1kb.addr0 == faultaddr[7]+4)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram5_1kb.din0 = u_top.mem5_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram5_1kb.din0 = u_top.mem5_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram5_1kb.din0;
end
if(u_top.u_sram6_1kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram6_1kb.addr0 == faultaddr[0]+5) ||
(num_fault > 1 && u_top.u_sram6_1kb.addr0 == faultaddr[1]+5) ||
(num_fault > 2 && u_top.u_sram6_1kb.addr0 == faultaddr[2]+5) ||
(num_fault > 3 && u_top.u_sram6_1kb.addr0 == faultaddr[3]+5) ||
(num_fault > 4 && u_top.u_sram6_1kb.addr0 == faultaddr[4]+5) ||
(num_fault > 5 && u_top.u_sram6_1kb.addr0 == faultaddr[5]+5) ||
(num_fault > 6 && u_top.u_sram6_1kb.addr0 == faultaddr[6]+5) ||
(num_fault > 7 && u_top.u_sram6_1kb.addr0 == faultaddr[7]+5)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram6_1kb.din0 = u_top.mem6_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram6_1kb.din0 = u_top.mem6_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram6_1kb.din0;
end
if(u_top.u_sram7_1kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram7_1kb.addr0 == faultaddr[0]+6) ||
(num_fault > 1 && u_top.u_sram7_1kb.addr0 == faultaddr[1]+6) ||
(num_fault > 2 && u_top.u_sram7_1kb.addr0 == faultaddr[2]+6) ||
(num_fault > 3 && u_top.u_sram7_1kb.addr0 == faultaddr[3]+6) ||
(num_fault > 4 && u_top.u_sram7_1kb.addr0 == faultaddr[4]+6) ||
(num_fault > 5 && u_top.u_sram7_1kb.addr0 == faultaddr[5]+6) ||
(num_fault > 6 && u_top.u_sram7_1kb.addr0 == faultaddr[6]+6) ||
(num_fault > 7 && u_top.u_sram7_1kb.addr0 == faultaddr[7]+6)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram7_1kb.din0 = u_top.mem7_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram7_1kb.din0 = u_top.mem7_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram7_1kb.din0;
end
if(u_top.u_sram8_1kb.web0 == 1'b0 &&
((num_fault > 0 && u_top.u_sram8_1kb.addr0 == faultaddr[0]+7) ||
(num_fault > 1 && u_top.u_sram8_1kb.addr0 == faultaddr[1]+7) ||
(num_fault > 2 && u_top.u_sram8_1kb.addr0 == faultaddr[2]+7) ||
(num_fault > 3 && u_top.u_sram8_1kb.addr0 == faultaddr[3]+7) ||
(num_fault > 4 && u_top.u_sram8_1kb.addr0 == faultaddr[4]+7) ||
(num_fault > 5 && u_top.u_sram8_1kb.addr0 == faultaddr[5]+7) ||
(num_fault > 6 && u_top.u_sram8_1kb.addr0 == faultaddr[6]+7) ||
(num_fault > 7 && u_top.u_sram8_1kb.addr0 == faultaddr[7]+7)))
begin
if(fault_type == 0) // Struck at 0
force u_top.u_sram8_1kb.din0 = u_top.mem8_din_b & 32'hFFFF_FFFE;
else
force u_top.u_sram8_1kb.din0 = u_top.mem8_din_b | 32'h1;
-> error_insert;
end else begin
release u_top.u_sram8_1kb.din0;
end
end
end
begin
// Loop for BIST TimeOut
repeat (200000) @(posedge clock);
// $display("+1000 cycles");
test_fail = 1;
end
join_any
disable fork; //disable pending fork activity
// Read Back the Failure Address and cross-check all the 8 MBIST
for(j=0; j < 8; j=j+1) begin
fail_addr1 = faultaddr[0]+j;
fail_addr2 = faultaddr[1]+j;
fail_addr3 = faultaddr[2]+j;
fail_addr4 = faultaddr[3]+j;
// Select the Serial SDI/SDO interface
wb_user_core_write(`GLBL_BIST_CTRL1,j);
if(num_fault == 1)
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{16'h0,7'h0,fail_addr1},32'h0000_FFFF);
if(num_fault == 2)
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{7'h0,fail_addr2,7'h0,fail_addr1},32'hFFFF_FFFF);
if(num_fault == 3) begin
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{7'h0,fail_addr2,7'h0,fail_addr1},32'hFFFF_FFFF);
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{16'h0,7'h0,fail_addr3},32'h0000_FFFF);
end
if(num_fault >= 4) begin
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{7'h0,fail_addr2,7'h0,fail_addr1},32'hFFFF_FFFF);
wb_user_core_read_check(`GLBL_BIST_SRDATA,read_data,{7'h0,faultaddr[3]+j,7'h0,fail_addr3},32'hFFFF_FFFF);
end
end
end
endtask
task wb_user_core_write;
input [31:0] address;
input [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h1; // write
wbd_ext_dat_i =data; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("STATUS: WB USER ACCESS WRITE Address : 0x%x, Data : 0x%x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read;
input [31:0] address;
output [31:0] data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
#1;
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
//$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read_check;
input [31:0] address;
output [31:0] data;
input [31:0] cmp_data;
input [31:0] cmp_mask;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
#1;
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
if((data & cmp_mask) !== (cmp_data & cmp_mask) ) begin
$display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,(cmp_data & cmp_mask),(data & cmp_mask));
test_fail = 1;
end else begin
$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,(data & cmp_mask));
end
repeat (2) @(posedge clock);
end
endtask
endmodule
`default_nettype wire