| //////////////////////////////////////////////////////////////////////////// |
| // SPDX-FileCopyrightText: 2021 , Dinesh Annayya |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| // SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org> |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Standalone User validation Test bench //// |
| //// //// |
| //// This file is part of the YIFive cores project //// |
| //// https://github.com/dineshannayya/yifive_r0.git //// |
| //// http://www.opencores.org/cores/yifive/ //// |
| //// //// |
| //// Description //// |
| //// This is a standalone test bench to validate the //// |
| //// Digital core. //// |
| //// 1. User Risc core is booted using compiled code of //// |
| //// user_risc_boot.c //// |
| //// 2. User Risc core uses Serial Flash and SDRAM to boot //// |
| //// 3. After successful boot, Risc core will check the UART //// |
| //// RX Data, If it's available then it loop back the same //// |
| //// data in uart tx //// |
| //// 4. Test bench send random 40 character towards User uart //// |
| //// and expect same data to return back //// |
| //// //// |
| //// To Do: //// |
| //// nothing //// |
| //// //// |
| //// Author(s): //// |
| //// - Dinesh Annayya, dinesha@opencores.org //// |
| //// //// |
| //// Revision : //// |
| //// 0.1 - 16th Feb 2021, Dinesh A //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Copyright (C) 2000 Authors and OPENCORES.ORG //// |
| //// //// |
| //// This source file may be used and distributed without //// |
| //// restriction provided that this copyright statement is not //// |
| //// removed from the file and that any derivative work contains //// |
| //// the original copyright notice and the associated disclaimer. //// |
| //// //// |
| //// This source file is free software; you can redistribute it //// |
| //// and/or modify it under the terms of the GNU Lesser General //// |
| //// Public License as published by the Free Software Foundation; //// |
| //// either version 2.1 of the License, or (at your option) any //// |
| //// later version. //// |
| //// //// |
| //// This source is distributed in the hope that it will be //// |
| //// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
| //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
| //// PURPOSE. See the GNU Lesser General Public License for more //// |
| //// details. //// |
| //// //// |
| //// You should have received a copy of the GNU Lesser General //// |
| //// Public License along with this source; if not, download it //// |
| //// from http://www.opencores.org/lgpl.shtml //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| |
| `default_nettype wire |
| |
| `timescale 1 ns/10 ps |
| |
| `include "uprj_netlists.v" |
| |
| |
| module user_basic_tb; |
| parameter CLK1_PERIOD = 10; |
| parameter CLK2_PERIOD = 2; |
| |
| reg clock ; |
| reg clock2 ; |
| reg wb_rst_i ; |
| reg power1, power2; |
| reg power3, power4; |
| |
| reg wbd_ext_cyc_i; // strobe/request |
| reg wbd_ext_stb_i; // strobe/request |
| reg [31:0] wbd_ext_adr_i; // address |
| reg wbd_ext_we_i; // write |
| reg [31:0] wbd_ext_dat_i; // data output |
| reg [3:0] wbd_ext_sel_i; // byte enable |
| |
| wire [31:0] wbd_ext_dat_o; // data input |
| wire wbd_ext_ack_o; // acknowlegement |
| wire wbd_ext_err_o; // error |
| |
| // User I/O |
| wire [37:0] io_oeb ; |
| wire [37:0] io_out ; |
| wire [37:0] io_in ; |
| |
| wire [37:0] mprj_io ; |
| wire [7:0] mprj_io_0 ; |
| reg test_fail ; |
| reg [31:0] read_data ; |
| //---------------------------------- |
| // Uart Configuration |
| // --------------------------------- |
| reg [1:0] uart_data_bit ; |
| reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit; |
| reg uart_stick_parity ; // 1: force even parity |
| reg uart_parity_en ; // parity enable |
| reg uart_even_odd_parity ; // 0: odd parity; 1: even parity |
| |
| reg [7:0] uart_data ; |
| reg [15:0] uart_divisor ; // divided by n * 16 |
| reg [15:0] uart_timeout ;// wait time limit |
| |
| reg [15:0] uart_rx_nu ; |
| reg [15:0] uart_tx_nu ; |
| reg [7:0] uart_write_data [0:39]; |
| reg uart_fifo_enable ; // fifo mode disable |
| |
| wire clock_mon; |
| integer test_step; |
| |
| integer i,j; |
| |
| // External clock is used by default. Make this artificially fast for the |
| // simulation. Normally this would be a slow clock and the digital PLL |
| // would be the fast clock. |
| |
| always #(CLK1_PERIOD/2) clock <= (clock === 1'b0); |
| always #(CLK2_PERIOD/2) clock2 <= (clock2 === 1'b0); |
| |
| initial begin |
| test_step = 0; |
| clock = 0; |
| clock2 = 0; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| end |
| |
| `ifdef WFDUMP |
| initial begin |
| $dumpfile("risc_boot.vcd"); |
| $dumpvars(3, user_basic_tb); |
| end |
| `endif |
| |
| initial begin |
| wb_rst_i <= 1'b1; |
| #100; |
| wb_rst_i <= 1'b0; // Release reset |
| end |
| initial |
| begin |
| |
| #200; // Wait for reset removal |
| repeat (10) @(posedge clock); |
| $display("Monitor: Standalone User Basic Test Started"); |
| |
| repeat (2) @(posedge clock); |
| |
| test_fail=0; |
| fork |
| begin |
| // Default Value Check |
| // assign cfg_glb_ctrl = reg_0[7:0]; |
| // assign cfg_wb_clk_ctrl = reg_0[11:8]; |
| |
| $display("Step-1, WBS CLK: CLOCK1"); |
| test_step = 1; |
| wb_user_core_write('h3080_0000,{20'h0,4'h0,8'h00}); |
| clock_monitor(CLK1_PERIOD); |
| |
| $display("Step-2, WBS CLK: CLOCK1/2"); |
| test_step = 2; |
| wb_user_core_write('h3080_0000,{20'h0,4'h8,8'h00}); |
| clock_monitor(2*CLK1_PERIOD); |
| |
| $display("Step-3, WBS CLK: CLOCK1/(2+1)"); |
| test_step = 3; |
| wb_user_core_write('h3080_0000,{20'h0,4'h9,8'h00}); |
| clock_monitor(3*CLK1_PERIOD); |
| |
| $display("Step-4, WBS CLK: CLOCK1/(2+2)"); |
| test_step = 4; |
| wb_user_core_write('h3080_0000,{20'h0,4'hA,8'h00}); |
| clock_monitor(4*CLK1_PERIOD); |
| |
| $display("Step-5, WBS CLK: CLOCK1/(2+3)"); |
| test_step = 5; |
| wb_user_core_write('h3080_0000,{20'h0,4'hB,8'h00}); |
| clock_monitor(5*CLK1_PERIOD); |
| |
| $display("Step-6, WBS CLK: CLOCK1/(2+4)"); |
| test_step = 6; |
| wb_user_core_write('h3080_0000,{20'h0,4'hC,8'h00}); |
| clock_monitor(6*CLK1_PERIOD); |
| |
| $display("Step-7, WBS CLK: CLOCK2/(2+5)"); |
| test_step = 6; |
| wb_user_core_write('h3080_0000,{20'h0,4'hD,8'h00}); |
| clock_monitor(7*CLK1_PERIOD); |
| |
| $display("Step-8, WBS CLK: CLOCK2/(2+6)"); |
| test_step = 8; |
| wb_user_core_write('h3080_0000,{20'h0,4'hE,8'h00}); |
| clock_monitor(8*CLK1_PERIOD); |
| |
| $display("Step-9, WBS CLK: CLOCK2/(2+7)"); |
| test_step = 9; |
| wb_user_core_write('h3080_0000,{20'h0,4'hF,8'h00}); |
| clock_monitor(9*CLK1_PERIOD); |
| end |
| |
| begin |
| repeat (20000) @(posedge clock); |
| // $display("+1000 cycles"); |
| test_fail = 1; |
| end |
| join_any |
| disable fork; //disable pending fork activity |
| |
| |
| $display("###################################################"); |
| if(test_fail == 0) begin |
| `ifdef GL |
| $display("Monitor: Standalone User UART Test (GL) Passed"); |
| `else |
| $display("Monitor: Standalone User UART Test (RTL) Passed"); |
| `endif |
| end else begin |
| `ifdef GL |
| $display("Monitor: Standalone User UART Test (GL) Failed"); |
| `else |
| $display("Monitor: Standalone User UART Test (RTL) Failed"); |
| `endif |
| end |
| $display("###################################################"); |
| #100 |
| $finish; |
| end |
| |
| |
| wire USER_VDD1V8 = 1'b1; |
| wire VSS = 1'b0; |
| |
| |
| user_project_wrapper u_top( |
| `ifdef USE_POWER_PINS |
| .vccd1(USER_VDD1V8), // User area 1 1.8V supply |
| .vssd1(VSS), // User area 1 digital ground |
| `endif |
| .wb_clk_i (clock), // System clock |
| .user_clock2 (clock2), // Real-time clock |
| .wb_rst_i (wb_rst_i), // Regular Reset signal |
| |
| .wbs_cyc_i (wbd_ext_cyc_i), // strobe/request |
| .wbs_stb_i (wbd_ext_stb_i), // strobe/request |
| .wbs_adr_i (wbd_ext_adr_i), // address |
| .wbs_we_i (wbd_ext_we_i), // write |
| .wbs_dat_i (wbd_ext_dat_i), // data output |
| .wbs_sel_i (wbd_ext_sel_i), // byte enable |
| |
| .wbs_dat_o (wbd_ext_dat_o), // data input |
| .wbs_ack_o (wbd_ext_ack_o), // acknowlegement |
| |
| |
| // Logic Analyzer Signals |
| .la_data_in ('0) , |
| .la_data_out (), |
| .la_oenb ('0), |
| |
| |
| // IOs |
| .io_in (io_in) , |
| .io_out (io_out) , |
| .io_oeb (io_oeb) , |
| |
| .user_irq () |
| |
| ); |
| |
| `ifndef GL // Drive Power for Hold Fix Buf |
| // All standard cell need power hook-up for functionality work |
| initial begin |
| |
| force u_top.u_wb_host.u_buf_wb_rst.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_wb_rst.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_wb_rst.VGND =VSS; |
| force u_top.u_wb_host.u_buf_wb_rst.VNB = VSS; |
| |
| force u_top.u_wb_host.u_buf_bist_rst.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_bist_rst.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_bist_rst.VGND =VSS; |
| force u_top.u_wb_host.u_buf_bist_rst.VNB = VSS; |
| |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VGND =VSS; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_wb_host.u_delay1_stb0.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay1_stb0.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay1_stb0.VGND =VSS; |
| force u_top.u_wb_host.u_delay1_stb0.VNB = VSS; |
| |
| force u_top.u_wb_host.u_delay2_stb1.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay2_stb1.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay2_stb1.VGND =VSS; |
| force u_top.u_wb_host.u_delay2_stb1.VNB = VSS; |
| |
| force u_top.u_wb_host.u_delay2_stb2.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay2_stb2.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_delay2_stb2.VGND =VSS; |
| force u_top.u_wb_host.u_delay2_stb2.VNB = VSS; |
| |
| |
| end |
| `endif |
| |
| |
| task clock_monitor; |
| input [15:0] exp_wbs_period; |
| begin |
| force clock_mon = u_top.u_wb_host.wbs_clk_out; |
| check_clock_period("WBS Clock",exp_wbs_period); |
| release clock_mon; |
| |
| end |
| endtask |
| |
| //---------------------------------- |
| // Check the clock period |
| //---------------------------------- |
| task check_clock_period; |
| input [127:0] clk_name; |
| input [15:0] clk_period; // in NS |
| time prev_t, next_t, periodd; |
| begin |
| $timeformat(-12,3,"ns",10); |
| repeat(1) @(posedge clock_mon); |
| repeat(1) @(posedge clock_mon); |
| prev_t = $realtime; |
| repeat(100) @(posedge clock_mon); |
| next_t = $realtime; |
| periodd = (next_t-prev_t)/100; |
| //periodd = (periodd)/1e9; |
| if(clk_period != periodd) begin |
| $display("STATUS: FAIL => %s Exp Period: %d Rxd: %d",clk_name,clk_period,periodd); |
| test_fail = 1; |
| end else begin |
| $display("STATUS: PASS => %s Period: %d ",clk_name,clk_period); |
| end |
| end |
| endtask |
| |
| |
| |
| |
| |
| |
| task wb_user_core_write; |
| input [31:0] address; |
| input [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h1; // write |
| wbd_ext_dat_i =data; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| $display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| task wb_user_core_read; |
| input [31:0] address; |
| output [31:0] data; |
| reg [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='0; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| data = wbd_ext_dat_o; |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| $display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| `ifdef GL |
| |
| wire wbd_spi_stb_i = u_top.u_spi_master.wbd_stb_i; |
| wire wbd_spi_ack_o = u_top.u_spi_master.wbd_ack_o; |
| wire wbd_spi_we_i = u_top.u_spi_master.wbd_we_i; |
| wire [31:0] wbd_spi_adr_i = u_top.u_spi_master.wbd_adr_i; |
| wire [31:0] wbd_spi_dat_i = u_top.u_spi_master.wbd_dat_i; |
| wire [31:0] wbd_spi_dat_o = u_top.u_spi_master.wbd_dat_o; |
| wire [3:0] wbd_spi_sel_i = u_top.u_spi_master.wbd_sel_i; |
| |
| wire wbd_sdram_stb_i = u_top.u_sdram_ctrl.wb_stb_i; |
| wire wbd_sdram_ack_o = u_top.u_sdram_ctrl.wb_ack_o; |
| wire wbd_sdram_we_i = u_top.u_sdram_ctrl.wb_we_i; |
| wire [31:0] wbd_sdram_adr_i = u_top.u_sdram_ctrl.wb_addr_i; |
| wire [31:0] wbd_sdram_dat_i = u_top.u_sdram_ctrl.wb_dat_i; |
| wire [31:0] wbd_sdram_dat_o = u_top.u_sdram_ctrl.wb_dat_o; |
| wire [3:0] wbd_sdram_sel_i = u_top.u_sdram_ctrl.wb_sel_i; |
| |
| wire wbd_uart_stb_i = u_top.u_uart_i2c_usb.reg_cs; |
| wire wbd_uart_ack_o = u_top.u_uart_i2c_usb.reg_ack; |
| wire wbd_uart_we_i = u_top.u_uart_i2c_usb.reg_wr; |
| wire [7:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb.reg_addr; |
| wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb.reg_wdata; |
| wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb.reg_rdata; |
| wire wbd_uart_sel_i = u_top.u_uart_i2c_usb.reg_be; |
| |
| `endif |
| |
| /** |
| `ifdef GL |
| //----------------------------------------------------------------------------- |
| // RISC IMEM amd DMEM Monitoring TASK |
| //----------------------------------------------------------------------------- |
| |
| `define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top |
| |
| always@(posedge `RISC_CORE.wb_clk) begin |
| if(`RISC_CORE.wbd_imem_ack_i) |
| $display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i); |
| if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o) |
| $display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o); |
| if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o) |
| $display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i); |
| end |
| |
| `endif |
| **/ |
| endmodule |
| `default_nettype wire |