blob: 73c87f13e8ef2bca78f0e994b58c007272daee14 [file] [log] [blame]
// `default_nettype none
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
/*--------------------------------------------------------------*/
/* caravan, a project harness for the Google/SkyWater sky130 */
/* fabrication process and open source PDK. caravan is an */
/* alternative architecture to caravel that has simple straight */
/* through connections replacing the GPIO pads on the top side */
/* of the padframe. A total of 11 pads are converted from GPIO */
/* to analog, leaving 27 GPIO. */
/* */
/* Copyright 2021 efabless, Inc. */
/* Written by Tim Edwards, December 2019 */
/* and Mohamed Shalan, August 2020 */
/* This file is open source hardware released under the */
/* Apache 2.0 license. See file LICENSE. */
/* */
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
/* Derived types for the array bounds on the two digital and */
/* two analog pad arrays. As defined above, the sections have */
/* the number of pads as follows: */
/* */
/* DIG2 : 13 GPIO pads */
/* ANA2 : 6 analog pads */
/* ANA1 : 5 analog pads */
/* DIG1 : 14 GPIO pads */
/* */
/* This makes a total of 38 pads = `MPRJ_IO_PADS */
/* The pads are still designated as mprj_io[37:0] around the */
/* padframe. The SoC core remains the same, so the programming */
/* of the digital signals remains the same, but the values for */
/* GPIO 15-25 are not used. */
/*--------------------------------------------------------------*/
`define DIG2_TOP (`MPRJ_IO_PADS - 1)
`define DIG2_BOT (`MPRJ_IO_PADS_1 + `ANALOG_PADS_2)
`define ANA2_TOP (`MPRJ_IO_PADS_1 + `ANALOG_PADS_2 - 1)
`define ANA2_BOT (`MPRJ_IO_PADS_1)
`define ANA1_TOP (`MPRJ_IO_PADS_1 - 1)
`define ANA1_BOT (`MPRJ_IO_PADS_1 - `ANALOG_PADS_1)
`define DIG1_TOP (`MPRJ_IO_PADS_1 - `ANALOG_PADS_1 - 1)
`define DIG1_BOT (0)
`define MPRJ_DIG_PADS (`MPRJ_IO_PADS - `ANALOG_PADS)
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
module caravan (
inout vddio, // Common 3.3V padframe/ESD power
inout vddio_2, // Common 3.3V padframe/ESD power
inout vssio, // Common padframe/ESD ground
inout vssio_2, // Common padframe/ESD ground
inout vdda, // Management 3.3V power
inout vssa, // Common analog ground
inout vccd, // Management/Common 1.8V power
inout vssd, // Common digital ground
inout vdda1, // User area 1 3.3V power
inout vdda1_2, // User area 1 3.3V power
inout vdda2, // User area 2 3.3V power
inout vssa1, // User area 1 analog ground
inout vssa1_2, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V power
inout vccd2, // User area 2 1.8V power
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
inout gpio, // Used for external LDO control
inout [`MPRJ_IO_PADS-1:0] mprj_io,
output [`MPRJ_PWR_PADS-1:0] pwr_ctrl_out,
input clock, // CMOS core clock input, not a crystal
input resetb,
// Note that only two pins are available on the flash so dual and
// quad flash modes are not available.
output flash_csb,
output flash_clk,
output flash_io0,
output flash_io1
);
//------------------------------------------------------------
// This value is uniquely defined for each user project.
//------------------------------------------------------------
parameter USER_PROJECT_ID = 32'h00000000;
// These pins are overlaid on mprj_io space. They have the function
// below when the management processor is in reset, or in the default
// configuration. They are assigned to uses in the user space by the
// configuration program running off of the SPI flash. Note that even
// when the user has taken control of these pins, they can be restored
// to the original use by setting the resetb pin low. The SPI pins and
// UART pins can be connected directly to an FTDI chip as long as the
// FTDI chip sets these lines to high impedence (input function) at
// all times except when holding the chip in reset.
// JTAG = mprj_io[0] (inout)
// SDO = mprj_io[1] (output)
// SDI = mprj_io[2] (input)
// CSB = mprj_io[3] (input)
// SCK = mprj_io[4] (input)
// ser_rx = mprj_io[5] (input)
// ser_tx = mprj_io[6] (output)
// irq = mprj_io[7] (input)
// These pins are reserved for any project that wants to incorporate
// its own processor and flash controller. While a user project can
// technically use any available I/O pins for the purpose, these
// four pins connect to a pass-through mode from the SPI slave (pins
// 1-4 above) so that any SPI flash connected to these specific pins
// can be accessed through the SPI slave even when the processor is in
// reset.
// user_flash_csb = mprj_io[8]
// user_flash_sck = mprj_io[9]
// user_flash_io0 = mprj_io[10]
// user_flash_io1 = mprj_io[11]
// One-bit GPIO dedicated to management SoC (outside of user control)
wire gpio_out_core;
wire gpio_in_core;
wire gpio_mode0_core;
wire gpio_mode1_core;
wire gpio_outenb_core;
wire gpio_inenb_core;
// 27 GPIO pads with full controls
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_inp_dis;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_oeb;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_ib_mode_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_vtrip_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_slow_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_holdover;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_en;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_pol;
wire [(`MPRJ_IO_PADS-`ANALOG_PADS)*3-1:0] mprj_io_dm;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in_3v3;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_out;
// User Project Control (user-facing)
// 27 GPIO bidirectional with in/out/oeb and a 3.3V copy of the input
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_oeb;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_in;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_out;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_in_3v3;
// 18 direct connections to GPIO for low-frequency, low-voltage analog
wire [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_analog;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_noesd;
// 3 power supply ESD clamps for user applications
wire [2:0] user_clamp_high;
wire [2:0] user_clamp_low;
// 11 core connections to the analog pads
wire [`ANALOG_PADS-1:0] user_analog;
/* Padframe control signals */
wire [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1:0] gpio_serial_link_1;
wire [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:0] gpio_serial_link_2;
wire mprj_io_loader_resetn;
wire mprj_io_loader_clock;
wire mprj_io_loader_data_1; /* user1 side serial loader */
wire mprj_io_loader_data_2; /* user2 side serial loader */
// User Project Control management I/O
// There are two types of GPIO connections:
// (1) Full Bidirectional: Management connects to in, out, and oeb
// Uses: JTAG and SDO
// (2) Selectable bidirectional: Management connects to in and out,
// which are tied together. oeb is grounded (oeb from the
// configuration is used)
// SDI = mprj_io[2] (input)
// CSB = mprj_io[3] (input)
// SCK = mprj_io[4] (input)
// ser_rx = mprj_io[5] (input)
// ser_tx = mprj_io[6] (output)
// irq = mprj_io[7] (input)
wire [`MPRJ_IO_PADS-1:0] mgmt_io_in;
wire jtag_out, sdo_out;
wire jtag_outenb, sdo_outenb;
wire gpio_flash_io2_out, gpio_flash_io3_out;
wire [1:0] mgmt_io_nc; /* no-connects */
wire clock_core;
// Power-on-reset signal. The reset pad generates the sense-inverted
// reset at 3.3V. The 1.8V signal and the inverted 1.8V signal are
// derived.
wire porb_h;
wire porb_l;
wire por_l;
wire rstb_h;
wire rstb_l;
wire flash_clk_core, flash_csb_core;
wire flash_clk_oeb_core, flash_csb_oeb_core;
wire flash_clk_ieb_core, flash_csb_ieb_core;
wire flash_io0_oeb_core, flash_io1_oeb_core;
wire flash_io2_oeb_core, flash_io3_oeb_core;
wire flash_io0_ieb_core, flash_io1_ieb_core;
wire flash_io0_do_core, flash_io1_do_core;
wire flash_io0_di_core, flash_io1_di_core;
chip_io_alt #(
.ANALOG_PADS_1(`ANALOG_PADS_1),
.ANALOG_PADS_2(`ANALOG_PADS_2)
) padframe (
`ifndef TOP_ROUTING
// Package Pins
.vddio_pad (vddio), // Common padframe/ESD supply
.vddio_pad2 (vddio_2),
.vssio_pad (vssio), // Common padframe/ESD ground
.vssio_pad2 (vssio_2),
.vccd_pad (vccd), // Common 1.8V supply
.vssd_pad (vssd), // Common digital ground
.vdda_pad (vdda), // Management analog 3.3V supply
.vssa_pad (vssa), // Management analog ground
.vdda1_pad (vdda1), // User area 1 3.3V supply
.vdda1_pad2 (vdda1_2),
.vdda2_pad (vdda2), // User area 2 3.3V supply
.vssa1_pad (vssa1), // User area 1 analog ground
.vssa1_pad2 (vssa1_2),
.vssa2_pad (vssa2), // User area 2 analog ground
.vccd1_pad (vccd1), // User area 1 1.8V supply
.vccd2_pad (vccd2), // User area 2 1.8V supply
.vssd1_pad (vssd1), // User area 1 digital ground
.vssd2_pad (vssd2), // User area 2 digital ground
`endif
// Core Side Pins
.vddio (vddio_core),
.vssio (vssio_core),
.vdda (vdda_core),
.vssa (vssa_core),
.vccd (vccd_core),
.vssd (vssd_core),
.vdda1 (vdda1_core),
.vdda2 (vdda2_core),
.vssa1 (vssa1_core),
.vssa2 (vssa2_core),
.vccd1 (vccd1_core),
.vccd2 (vccd2_core),
.vssd1 (vssd1_core),
.vssd2 (vssd2_core),
.gpio(gpio),
.mprj_io(mprj_io),
.clock(clock),
.resetb(resetb),
.flash_csb(flash_csb),
.flash_clk(flash_clk),
.flash_io0(flash_io0),
.flash_io1(flash_io1),
// SoC Core Interface
.porb_h(porb_h),
.por(por_l),
.resetb_core_h(rstb_h),
.clock_core(clock_core),
.gpio_out_core(gpio_out_core),
.gpio_in_core(gpio_in_core),
.gpio_mode0_core(gpio_mode0_core),
.gpio_mode1_core(gpio_mode1_core),
.gpio_outenb_core(gpio_outenb_core),
.gpio_inenb_core(gpio_inenb_core),
.flash_csb_core(flash_csb_core),
.flash_clk_core(flash_clk_core),
.flash_csb_oeb_core(flash_csb_oeb_core),
.flash_clk_oeb_core(flash_clk_oeb_core),
.flash_io0_oeb_core(flash_io0_oeb_core),
.flash_io1_oeb_core(flash_io1_oeb_core),
.flash_csb_ieb_core(flash_csb_ieb_core),
.flash_clk_ieb_core(flash_clk_ieb_core),
.flash_io0_ieb_core(flash_io0_ieb_core),
.flash_io1_ieb_core(flash_io1_ieb_core),
.flash_io0_do_core(flash_io0_do_core),
.flash_io1_do_core(flash_io1_do_core),
.flash_io0_di_core(flash_io0_di_core),
.flash_io1_di_core(flash_io1_di_core),
.mprj_io_in(mprj_io_in),
.mprj_io_in_3v3(mprj_io_in_3v3),
.mprj_io_out(mprj_io_out),
.mprj_io_oeb(mprj_io_oeb),
.mprj_io_inp_dis(mprj_io_inp_dis),
.mprj_io_ib_mode_sel(mprj_io_ib_mode_sel),
.mprj_io_vtrip_sel(mprj_io_vtrip_sel),
.mprj_io_slow_sel(mprj_io_slow_sel),
.mprj_io_holdover(mprj_io_holdover),
.mprj_io_analog_en(mprj_io_analog_en),
.mprj_io_analog_sel(mprj_io_analog_sel),
.mprj_io_analog_pol(mprj_io_analog_pol),
.mprj_io_dm(mprj_io_dm),
.mprj_gpio_analog(user_gpio_analog),
.mprj_gpio_noesd(user_gpio_noesd),
.mprj_analog(user_analog),
.mprj_clamp_high(user_clamp_high),
.mprj_clamp_low(user_clamp_low)
);
// SoC core
wire caravel_clk;
wire caravel_clk2;
wire caravel_rstn;
wire [7:0] spi_ro_config_core;
// LA signals
wire [127:0] la_data_in_user; // From CPU to MPRJ
wire [127:0] la_data_in_mprj; // From MPRJ to CPU
wire [127:0] la_data_out_mprj; // From CPU to MPRJ
wire [127:0] la_data_out_user; // From MPRJ to CPU
wire [127:0] la_oenb_user; // From CPU to MPRJ
wire [127:0] la_oenb_mprj; // From CPU to MPRJ
wire [127:0] la_iena_mprj; // From CPU only
wire [2:0] user_irq; // From MPRJ to CPU
wire [2:0] user_irq_core;
wire [2:0] user_irq_ena;
// WB MI A (User Project)
wire mprj_cyc_o_core;
wire mprj_stb_o_core;
wire mprj_we_o_core;
wire [3:0] mprj_sel_o_core;
wire [31:0] mprj_adr_o_core;
wire [31:0] mprj_dat_o_core;
wire mprj_ack_i_core;
wire [31:0] mprj_dat_i_core;
// Mask revision
wire [31:0] mask_rev;
wire mprj_clock;
wire mprj_clock2;
wire mprj_reset;
wire mprj_cyc_o_user;
wire mprj_stb_o_user;
wire mprj_we_o_user;
wire [3:0] mprj_sel_o_user;
wire [31:0] mprj_adr_o_user;
wire [31:0] mprj_dat_o_user;
wire mprj_vcc_pwrgood;
wire mprj2_vcc_pwrgood;
wire mprj_vdd_pwrgood;
wire mprj2_vdd_pwrgood;
// Storage area
// Management R/W interface
wire [`RAM_BLOCKS-1:0] mgmt_ena;
wire [`RAM_BLOCKS-1:0] mgmt_wen;
wire [(`RAM_BLOCKS*4)-1:0] mgmt_wen_mask;
wire [7:0] mgmt_addr;
wire [31:0] mgmt_wdata;
wire [(`RAM_BLOCKS*32)-1:0] mgmt_rdata;
// Management RO interface
wire mgmt_ena_ro;
wire [7:0] mgmt_addr_ro;
wire [31:0] mgmt_rdata_ro;
mgmt_core soc (
`ifdef USE_POWER_PINS
.VPWR(vccd_core),
.VGND(vssd_core),
`endif
// GPIO (1 pin)
.gpio_out_pad(gpio_out_core),
.gpio_in_pad(gpio_in_core),
.gpio_mode0_pad(gpio_mode0_core),
.gpio_mode1_pad(gpio_mode1_core),
.gpio_outenb_pad(gpio_outenb_core),
.gpio_inenb_pad(gpio_inenb_core),
// Primary SPI flash controller
.flash_csb(flash_csb_core),
.flash_clk(flash_clk_core),
.flash_csb_oeb(flash_csb_oeb_core),
.flash_clk_oeb(flash_clk_oeb_core),
.flash_io0_oeb(flash_io0_oeb_core),
.flash_io1_oeb(flash_io1_oeb_core),
.flash_csb_ieb(flash_csb_ieb_core),
.flash_clk_ieb(flash_clk_ieb_core),
.flash_io0_ieb(flash_io0_ieb_core),
.flash_io1_ieb(flash_io1_ieb_core),
.flash_io0_do(flash_io0_do_core),
.flash_io1_do(flash_io1_do_core),
.flash_io0_di(flash_io0_di_core),
.flash_io1_di(flash_io1_di_core),
// Master Reset
.resetb(rstb_l),
.porb(porb_l),
// Clocks and reset
.clock(clock_core),
.core_clk(caravel_clk),
.user_clk(caravel_clk2),
.core_rstn(caravel_rstn),
// IRQ
.user_irq(user_irq),
.user_irq_ena(user_irq_ena),
// Logic Analyzer
.la_input(la_data_in_mprj),
.la_output(la_data_out_mprj),
.la_oenb(la_oenb_mprj),
.la_iena(la_iena_mprj),
// User Project IO Control
.mprj_vcc_pwrgood(mprj_vcc_pwrgood),
.mprj2_vcc_pwrgood(mprj2_vcc_pwrgood),
.mprj_vdd_pwrgood(mprj_vdd_pwrgood),
.mprj2_vdd_pwrgood(mprj2_vdd_pwrgood),
.mprj_io_loader_resetn(mprj_io_loader_resetn),
.mprj_io_loader_clock(mprj_io_loader_clock),
.mprj_io_loader_data_1(mprj_io_loader_data_1),
.mprj_io_loader_data_2(mprj_io_loader_data_2),
.mgmt_in_data(mgmt_io_in),
.mgmt_out_data({gpio_flash_io3_out, gpio_flash_io2_out,
mgmt_io_in[(`MPRJ_IO_PADS-3):2],
mgmt_io_nc}),
.pwr_ctrl_out(pwr_ctrl_out),
.sdo_out(sdo_out),
.sdo_outenb(sdo_outenb),
.jtag_out(jtag_out),
.jtag_outenb(jtag_outenb),
.flash_io2_oeb(flash_io2_oeb_core),
.flash_io3_oeb(flash_io3_oeb_core),
// User Project Slave ports (WB MI A)
.mprj_cyc_o(mprj_cyc_o_core),
.mprj_stb_o(mprj_stb_o_core),
.mprj_we_o(mprj_we_o_core),
.mprj_sel_o(mprj_sel_o_core),
.mprj_adr_o(mprj_adr_o_core),
.mprj_dat_o(mprj_dat_o_core),
.mprj_ack_i(mprj_ack_i_core),
.mprj_dat_i(mprj_dat_i_core),
// mask data
.mask_rev(mask_rev),
// MGMT area R/W interface
.mgmt_ena(mgmt_ena),
.mgmt_wen_mask(mgmt_wen_mask),
.mgmt_wen(mgmt_wen),
.mgmt_addr(mgmt_addr),
.mgmt_wdata(mgmt_wdata),
.mgmt_rdata(mgmt_rdata),
// MGMT area RO interface
.mgmt_ena_ro(mgmt_ena_ro),
.mgmt_addr_ro(mgmt_addr_ro),
.mgmt_rdata_ro(mgmt_rdata_ro)
);
/* Clock and reset to user space are passed through a tristate */
/* buffer like the above, but since they are intended to be */
/* always active, connect the enable to the logic-1 output from */
/* the vccd1 domain. */
mgmt_protect mgmt_buffers (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
.vccd2(vccd2_core),
.vssd2(vssd2_core),
.vdda1(vdda1_core),
.vssa1(vssa1_core),
.vdda2(vdda2_core),
.vssa2(vssa2_core),
`endif
.caravel_clk(caravel_clk),
.caravel_clk2(caravel_clk2),
.caravel_rstn(caravel_rstn),
.mprj_cyc_o_core(mprj_cyc_o_core),
.mprj_stb_o_core(mprj_stb_o_core),
.mprj_we_o_core(mprj_we_o_core),
.mprj_sel_o_core(mprj_sel_o_core),
.mprj_adr_o_core(mprj_adr_o_core),
.mprj_dat_o_core(mprj_dat_o_core),
.user_irq_core(user_irq_core),
.la_data_out_core(la_data_out_user),
.la_data_out_mprj(la_data_out_mprj),
.la_data_in_core(la_data_in_user),
.la_data_in_mprj(la_data_in_mprj),
.la_oenb_mprj(la_oenb_mprj),
.la_oenb_core(la_oenb_user),
.la_iena_mprj(la_iena_mprj),
.user_irq_ena(user_irq_ena),
.user_clock(mprj_clock),
.user_clock2(mprj_clock2),
.user_reset(mprj_reset),
.mprj_cyc_o_user(mprj_cyc_o_user),
.mprj_stb_o_user(mprj_stb_o_user),
.mprj_we_o_user(mprj_we_o_user),
.mprj_sel_o_user(mprj_sel_o_user),
.mprj_adr_o_user(mprj_adr_o_user),
.mprj_dat_o_user(mprj_dat_o_user),
.user_irq(user_irq),
.user1_vcc_powergood(mprj_vcc_pwrgood),
.user2_vcc_powergood(mprj2_vcc_pwrgood),
.user1_vdd_powergood(mprj_vdd_pwrgood),
.user2_vdd_powergood(mprj2_vdd_pwrgood)
);
/*----------------------------------------------*/
/* Wrapper module around the user project */
/*----------------------------------------------*/
assign user_io_in_3v3 = mprj_io_in_3v3;
user_analog_project_wrapper mprj (
`ifdef USE_POWER_PINS
.vdda1(vdda1_core), // User area 1 3.3V power
.vdda2(vdda2_core), // User area 2 3.3V power
.vssa1(vssa1_core), // User area 1 analog ground
.vssa2(vssa2_core), // User area 2 analog ground
.vccd1(vccd1_core), // User area 1 1.8V power
.vccd2(vccd2_core), // User area 2 1.8V power
.vssd1(vssd1_core), // User area 1 digital ground
.vssd2(vssd2_core), // User area 2 digital ground
`endif
.wb_clk_i(mprj_clock),
.wb_rst_i(mprj_reset),
// MGMT SoC Wishbone Slave
.wbs_cyc_i(mprj_cyc_o_user),
.wbs_stb_i(mprj_stb_o_user),
.wbs_we_i(mprj_we_o_user),
.wbs_sel_i(mprj_sel_o_user),
.wbs_adr_i(mprj_adr_o_user),
.wbs_dat_i(mprj_dat_o_user),
.wbs_ack_o(mprj_ack_i_core),
.wbs_dat_o(mprj_dat_i_core),
// Logic Analyzer
.la_data_in(la_data_in_user),
.la_data_out(la_data_out_user),
.la_oenb(la_oenb_user),
// IO Pads
.io_in (user_io_in),
.io_in_3v3 (user_io_in_3v3),
.io_out(user_io_out),
.io_oeb(user_io_oeb),
.gpio_analog(user_gpio_analog),
.gpio_noesd(user_gpio_noesd),
.io_clamp_high(user_clamp_high),
.io_clamp_low(user_clamp_low),
.io_analog(user_analog),
// Independent clock
.user_clock2(mprj_clock2),
// IRQ
.user_irq(user_irq_core)
);
/*--------------------------------------*/
/* End user project instantiation */
/*--------------------------------------*/
wire [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1:0] gpio_serial_link_1_shifted;
wire [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:0] gpio_serial_link_2_shifted;
assign gpio_serial_link_1_shifted = {gpio_serial_link_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_data_1};
// Note that serial_link_2 is backwards compared to serial_link_1, so it
// shifts in the other direction.
assign gpio_serial_link_2_shifted = {mprj_io_loader_data_2,
gpio_serial_link_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
// Propagating clock and reset to mitigate timing and fanout issues
wire [`MPRJ_IO_PADS_1-1:0] gpio_clock_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_clock_2;
wire [`MPRJ_IO_PADS_1-1:0] gpio_resetn_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_resetn_2;
wire [`MPRJ_IO_PADS_1-6:0] gpio_clock_1_shifted;
wire [`MPRJ_IO_PADS_2-7:0] gpio_clock_2_shifted;
wire [`MPRJ_IO_PADS_1-6:0] gpio_resetn_1_shifted;
wire [`MPRJ_IO_PADS_2-7:0] gpio_resetn_2_shifted;
assign gpio_clock_1_shifted = {gpio_clock_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_clock};
assign gpio_clock_2_shifted = {mprj_io_loader_clock,
gpio_clock_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
assign gpio_resetn_1_shifted = {gpio_resetn_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_resetn};
assign gpio_resetn_2_shifted = {mprj_io_loader_resetn,
gpio_resetn_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
// Each control block sits next to an I/O pad in the user area.
// It gets input through a serial chain from the previous control
// block and passes it to the next control block. Due to the nature
// of the shift register, bits are presented in reverse, as the first
// bit in ends up as the last bit of the last I/O pad control block.
// There are two types of block; the first two and the last two
// are configured to be full bidirectional under control of the
// management Soc (JTAG and SDO for the first two; flash_io2 and
// flash_io3 for the last two). The rest are configured to be default
// (input). Note that the first two and last two are the ones closest
// to the management SoC on either side, which minimizes the wire length
// of the extra signals those pads need.
/* First two GPIOs (JTAG and SDO) */
gpio_control_block #(
.DM_INIT(`DM_INIT), // Mode = output, strong up/down
.OENB_INIT(`OENB_INIT) // Enable output signaling from wire
) gpio_control_bidir_1 [1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[1:0]),
.serial_clock(gpio_clock_1_shifted[1:0]),
.resetn_out(gpio_resetn_1[1:0]),
.serial_clock_out(gpio_clock_1[1:0]),
.mgmt_gpio_in(mgmt_io_in[1:0]),
.mgmt_gpio_out({sdo_out, jtag_out}),
.mgmt_gpio_oeb({sdo_outenb, jtag_outenb}),
.one(),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[1:0]),
.serial_data_out(gpio_serial_link_1[1:0]),
// User-facing signals
.user_gpio_out(user_io_out[1:0]),
.user_gpio_oeb(user_io_oeb[1:0]),
.user_gpio_in(user_io_in[1:0]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[1:0]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[1:0]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[1:0]),
.pad_gpio_slow_sel(mprj_io_slow_sel[1:0]),
.pad_gpio_holdover(mprj_io_holdover[1:0]),
.pad_gpio_ana_en(mprj_io_analog_en[1:0]),
.pad_gpio_ana_sel(mprj_io_analog_sel[1:0]),
.pad_gpio_ana_pol(mprj_io_analog_pol[1:0]),
.pad_gpio_dm(mprj_io_dm[5:0]),
.pad_gpio_outenb(mprj_io_oeb[1:0]),
.pad_gpio_out(mprj_io_out[1:0]),
.pad_gpio_in(mprj_io_in[1:0])
);
/* Section 1 GPIOs (GPIO 0 to 18) */
wire [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-3:0] one_loop1;
gpio_control_block gpio_control_in_1 [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-3:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.mgmt_gpio_in(mgmt_io_in[`DIG1_TOP:2]),
.mgmt_gpio_out(mgmt_io_in[`DIG1_TOP:2]),
.mgmt_gpio_oeb(one_loop1),
.one(one_loop1),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.serial_data_out(gpio_serial_link_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.user_gpio_in(user_io_in[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*3-1:6]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2]),
.pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):2])
);
/* Last two GPIOs (flash_io2 and flash_io3) */
gpio_control_block #(
.DM_INIT(`DM_INIT), // Mode = output, strong up/down
.OENB_INIT(`OENB_INIT) // Enable output signaling from wire
) gpio_control_bidir_2 [1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
.mgmt_gpio_in(mgmt_io_in[(`DIG2_TOP):(`DIG2_TOP-1)]),
.mgmt_gpio_out({gpio_flash_io3_out, gpio_flash_io2_out}),
.mgmt_gpio_oeb({flash_io3_oeb_core, flash_io2_oeb_core}),
.one(),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-2)]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.user_gpio_in(user_io_in[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_DIG_PADS*3-1):(`MPRJ_DIG_PADS*3-6)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-2)])
);
/* Section 2 GPIOs (GPIO 19 to 37) */
wire [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3:0] one_loop2;
gpio_control_block gpio_control_in_2 [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
.mgmt_gpio_in(mgmt_io_in[(`DIG2_TOP-2):`DIG2_BOT]),
.mgmt_gpio_out(mgmt_io_in[(`DIG2_TOP-2):`DIG2_BOT]),
.mgmt_gpio_oeb(one_loop2),
.one(one_loop2),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3):0]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.user_gpio_in(user_io_in[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_dm(mprj_io_dm[((`MPRJ_DIG_PADS)*3-7):((`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*3)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_DIG_PADS-3):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)])
);
user_id_programming #(
.USER_PROJECT_ID(USER_PROJECT_ID)
) user_id_value (
`ifdef USE_POWER_PINS
.VPWR(vccd_core),
.VGND(vssd_core),
`endif
.mask_rev(mask_rev)
);
// Power-on-reset circuit
simple_por por (
`ifdef USE_POWER_PINS
.vdd3v3(vddio_core),
.vdd1v8(vccd_core),
.vss(vssio_core),
`endif
.porb_h(porb_h),
.porb_l(porb_l),
.por_l(por_l)
);
// XRES (chip input pin reset) reset level converter
sky130_fd_sc_hvl__lsbufhv2lv_1_wrapped rstb_level (
`ifdef USE_POWER_PINS
.VPWR(vddio_core),
.LVPWR(vccd_core),
.VGND(vssio_core),
`endif
.A(rstb_h),
.X(rstb_l)
);
// Storage area
storage storage(
`ifdef USE_POWER_PINS
.VPWR(vccd_core),
.VGND(vssd_core),
`endif
.mgmt_clk(caravel_clk),
.mgmt_ena(mgmt_ena),
.mgmt_wen(mgmt_wen),
.mgmt_wen_mask(mgmt_wen_mask),
.mgmt_addr(mgmt_addr),
.mgmt_wdata(mgmt_wdata),
.mgmt_rdata(mgmt_rdata),
// Management RO interface
.mgmt_ena_ro(mgmt_ena_ro),
.mgmt_addr_ro(mgmt_addr_ro),
.mgmt_rdata_ro(mgmt_rdata_ro)
);
endmodule
// `default_nettype wire