blob: defd3ffe9af06d61ab025297769c022a6c881577 [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include "verilog/dv/caravel/defs.h"
#include "verilog/dv/caravel/stub.c"
// --------------------------------------------------------
/*
MPRJ Logic Analyzer Test:
- Observes counter value through LA probes [31:0]
- Sets counter initial value through LA probes [63:32]
- Flags when counter value exceeds 500 through the management SoC gpio
- Outputs message to the UART when the test concludes successfuly
*/
int clk = 0;
void clock(){
// clock
reg_la2_data = 0x00000001;
reg_la2_data = 0x00000000;
// end clock
}
void add_value_to_register_no_proteccion(uint32_t value, uint32_t selected_register){
reg_la0_data = (selected_register << 5| 18 & 0x1F);
reg_la1_data = value;
}
void read_value_from_register_no_proteccion(uint32_t selected_register){
reg_la0_data = (selected_register << 5| 17 & 0x1F);
}
void add_value_to_register(uint32_t value, uint32_t selected_register){
reg_la0_data = (selected_register << 5| 2 & 0x1F);
reg_la1_data = value;
}
void read_value_from_register(uint32_t selected_register){
reg_la0_data = (selected_register << 5| 1 & 0x1F);
}
void main()
{
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
reg_spimaster_config = 0xa002; // Enable, prescaler = 2,
// connect to housekeeping SPI
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
// The upper GPIO pins are configured to be output
// and accessble to the management SoC.
// Used to flad the start/end of a test
// The lower GPIO pins are configured to be output
// and accessible to the user project. They show
// the project count value, although this test is
// designed to read the project count through the
// logic analyzer probes.
// I/O 6 is configured for the UART Tx line
reg_mprj_io_37 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_36 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_35 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_34 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_33 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_32 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_31 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_30 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_29 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_28 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_27 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_26 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_25 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_24 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_23 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_22 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_21 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_20 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_19 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_18 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_17 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_16 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_15 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_14 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_11 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_10 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_9 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_8 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_7 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_5 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_4 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_3 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_2 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_1 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_0 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_6 = GPIO_MODE_MGMT_STD_OUTPUT;
// Set UART clock to 64 kbaud (enable before I/O configuration)
reg_uart_clkdiv = 625;
reg_uart_enable = 1;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1);
// Configure LA probes
// outputs from the cpu are inputs for my project denoted for been 0
// inputs to the cpu are outpus for my project denoted for been 1
reg_la0_oenb = reg_la0_iena = 0x00000000; // [31:0]
reg_la1_oenb = reg_la1_iena = 0x00000000; // [63:32]
reg_la2_oenb = reg_la2_iena = 0xFFFFFFF8; // [95:64]
reg_la3_oenb = reg_la3_iena = 0xFFFFFFFF; // [127:96]
// Flag start of the test
reg_mprj_datal = 0xAB400000;
// clock and reset
reg_la2_data = 0x00000003;
reg_la2_data = 0x00000000;
// end clock
add_value_to_register_no_proteccion(258,4);
clock();
add_value_to_register(1,5);
clock();
read_value_from_register(5);
clock();
read_value_from_register_no_proteccion(4);
clock();
reg_mprj_datal = 0xAB410000;
print("\n");
print("Monitor: Test 11 Passed\n\n"); // Makes simulation very long!
reg_mprj_datal = 0xAB510000;
}