blob: c64b09259541622f8aedb6c81bbc5b0f35b0dffe [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output reg wbs_ack_o,
output reg [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire rst;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
wire [31:0] rdata;
wire [31:0] wdata;
wire [BITS-1:0] count;
wire valid;
wire [3:0] wstrb;
wire [31:0] la_write;
wire pwm1_select , pwm2_select , pid_select ;
wire pwm1_wbs_stb_i , pwm2_wbs_stb_i , pid_wbs_stb_i ;
wire pwm1_wbs_ack_o , pwm2_wbs_ack_o , pid_wbs_ack_o ;
reg [15:0] pwm1_wbs_dat_o ;
reg [15:0] pwm2_wbs_dat_o ;
reg [31:0] pid_wbs_dat_o ;
wire pwm_out1 , pwm_out2 ;
wire pwm_out1_oen , pwm_out2_oen ;
wire ptc1_intr , ptc2_intr ;
reg led1, led2, led3 ;
wire ptc_clk1,ptc_clk2;
wire capt_in1,capt_in1;
// Outputs
assign io_out = {33'b0,pwm_out2,pwm_out1,led3,led2,led1};
assign io_oeb = {33'b0,pwm_out2_oen,pwm_out1_oen,3'b111};
//assign io_out = {35'b0,led3,led2,led1};
//assign io_oeb = {35'b0,3'b111};
// Inputs
assign ptc_clk1 = io_in[0] ;
assign ptc_clk2 = io_in[1] ;
assign capt_in1 = io_in[2] ;
assign capt_in2 = io_in[3] ;
// IRQ
assign irq = {1'b0,ptc2_intr,ptc1_intr}; // Unused
// LA
//assign la_data_out = {{(127-BITS){1'b0}}, count};
assign la_data_out = 128'b0;
// Assuming LA probes [63:32] are for controlling the count register
//assign la_write = ~la_oenb[63:32] & ~{BITS{valid}};
// Assuming LA probes [65:64] are for controlling the count clk & reset
//assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i;
//assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i;
assign clk = wb_clk_i ;
assign rst = wb_rst_i ;
// Module Address Select Logic
assign pwm1_select = (wbs_adr_i[31:12] == 20'h30001) ;
assign pwm2_select = (wbs_adr_i[31:12] == 20'h30002) ;
assign pid_select = (wbs_adr_i[31:12] == 20'h30005) ;
// Module STROBE Select based on Address Range
assign pwm1_wbs_stb_i = (wbs_stb_i && pwm1_select) ;
assign pwm2_wbs_stb_i = (wbs_stb_i && pwm2_select) ;
assign pid_wbs_stb_i = (wbs_stb_i && pid_select) ;
// Led assigned from LA data in
always @(posedge clk) begin
led1 <= la_data_in[0] && la_oenb[0] ;
led2 <= la_data_in[1] && la_oenb[1] ;
led3 <= la_data_in[2] && la_oenb[2] ;
end
// Slave Acknowledge Response
always @(posedge clk)
wbs_ack_o <= (pwm1_wbs_ack_o || pwm2_wbs_ack_o || pid_wbs_ack_o) ;
//wbs_ack_o <= pid_wbs_ack_o ;
// Slave Return Data
always @(posedge clk)
if (pwm1_wbs_ack_o)
wbs_dat_o <= {pwm1_wbs_dat_o} ;
else if (pwm2_wbs_ack_o)
wbs_dat_o <= {pwm2_wbs_dat_o} ;
else if (pid_wbs_ack_o)
wbs_dat_o <= pid_wbs_dat_o ;
else
wbs_dat_o <= 32'h0 ;
// PTC1 Module instantiations
ptc_top ptc1_i (
.wb_clk_i (clk),
.wb_rst_i (rst),
.wb_cyc_i (wbs_cyc_i),
.wb_adr_i ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
.wb_dat_i (wbs_dat_i),
.wb_sel_i (wbs_sel_i),
.wb_we_i (wbs_we_i),
.wb_stb_i (pwm1_wbs_stb_i),
.wb_dat_o (pwm1_wbs_dat_o),
.wb_ack_o (pwm1_wbs_ack_o),
.wb_err_o ( ),
.wb_inta_o (ptc1_intr),
.gate_clk_pad_i (ptc_clk1),
.capt_pad_i (capt_in1),
.pwm_pad_o (pwm_out1),
.oen_padoen_o (pwm_out1_oen)
);
// PTC2 Module instantiations
ptc_top ptc2_i (
.wb_clk_i (clk),
.wb_rst_i (rst),
.wb_cyc_i (wbs_cyc_i),
.wb_adr_i ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
.wb_dat_i (wbs_dat_i),
.wb_sel_i (wbs_sel_i),
.wb_we_i (wbs_we_i),
.wb_stb_i (pwm2_wbs_stb_i),
.wb_dat_o (pwm2_wbs_dat_o),
.wb_ack_o (pwm2_wbs_ack_o),
.wb_err_o ( ),
.wb_inta_o (ptc1_intr),
.gate_clk_pad_i (ptc_clk2),
.capt_pad_i (capt_in2),
.pwm_pad_o (pwm_out2),
.oen_padoen_o (pwm_out2_oen)
);
/*
PID pid (
.i_clk (clk),
.i_rst (rst),
.i_wb_cyc (wbs_cyc_i),
.i_wb_stb (pid_wbs_stb_i),
.i_wb_we (wbs_we_i),
.i_wb_adr ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
.i_wb_data (wbs_dat_i),
.o_wb_ack (pid_wbs_ack_o),
.o_wb_data (pid_wbs_dat_o),
.o_un (),
.o_valid ()
);
*/
endmodule
`default_nettype wire