blob: db6516ead183927320a7c00debb73ff177067916 [file] [log] [blame]
//////////////////////////////////////////////////////////////////////
//// ////
//// SPI TX Module ////
//// ////
//// This file is part of the YIFive cores project ////
//// http://www.opencores.org/cores/yifive/ ////
//// ////
//// Description ////
//// This is SPI Master Transmit Word control logic. ////
//// This logic transmit data upto 32 bit in bit or Quad spi ////
//// mode ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision: ////
//// 0.1 - 16th Feb 2021, Dinesh A ////
//// Initial version ////
//// 0.2 - 24th Mar 2021, Dinesh A ////
//// 1. Comments are added ////
//// 2. RTL clean-up done and the output are registred////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
module spim_tx
(
// General Input
input logic clk, // SPI clock
input logic rstn, // Active low Reset
input logic en, // Transmit Enable
input logic tx_edge, // Transmiting Edge
output logic tx_done, // Transmission completion
output logic sdo0, // SPI Dout0
output logic sdo1, // SPI Dout1
output logic sdo2, // SPI Dout2
output logic sdo3, // SPI Dout3
input logic en_quad_in, // SPI quad mode indication
input logic [15:0] counter_in, // Transmit counter
input logic [31:0] txdata, // 32 bit tranmsit data
input logic data_valid, // Input data valid
output logic data_ready, // Data in acepted, this for txfifo
output logic clk_en_o // Enable Tx clock
);
logic [31:0] data_int ; // Data Input
logic [31:0] data_int_next ; // Next Data Input
logic [15:0] counter ; // Tx Counter
logic [15:0] counter_next ; // tx next counter
logic [15:0] counter_trgt ; // counter exit counter
logic tx32b_done ; // 32 bit Transmit done
logic en_quad;
enum logic [0:0] { IDLE, TRANSMIT } tx_CS, tx_NS;
// Indicate 32 bit data done, usefull for readining next 32b from txfifo
assign tx32b_done = (!en_quad && (counter[4:0] == 5'b11111)) || (en_quad && (counter[2:0] == 3'b111)) && tx_edge;
always_comb
begin
tx_NS = tx_CS;
data_int_next = data_int;
data_ready = 1'b0;
counter_next = counter;
case (tx_CS)
IDLE: begin
data_int_next = txdata;
counter_next = '0;
if (en && data_valid) begin
data_ready = 1'b1;
tx_NS = TRANSMIT;
end
end
TRANSMIT: begin
counter_next = counter + 1;
data_int_next = (en_quad) ? {data_int[27:0],4'b0000} : {data_int[30:0],1'b0};
if (tx_done) begin
counter_next = 0;
// Check if there is next data
if (en && data_valid) begin
data_int_next = txdata;
data_ready = 1'b1;
tx_NS = TRANSMIT;
end else begin
tx_NS = IDLE;
end
end else if (tx32b_done) begin
if (data_valid) begin
data_int_next = txdata;
data_ready = 1'b1;
end else begin
tx_NS = IDLE;
end
end
end
endcase
end
always_ff @(posedge clk, negedge rstn)
begin
if (~rstn)
begin
counter <= 0;
data_int <= 'h0;
tx_CS <= IDLE;
en_quad <= 0;
tx_done <= '0;
clk_en_o <= '0;
sdo0 <= '0;
sdo1 <= '0;
sdo2 <= '0;
sdo3 <= '0;
counter_trgt <= '0;
end
else
begin
if(tx_edge) begin
counter <= counter_next;
data_int <= data_int_next;
sdo0 <= (en_quad_in) ? data_int_next[28] : data_int_next[31];
sdo1 <= (en_quad_in) ? data_int_next[29] : 1'b0;
sdo2 <= (en_quad_in) ? data_int_next[30] : 1'b0;
sdo3 <= (en_quad_in) ? data_int_next[31] : 1'b0;
tx_CS <= tx_NS;
en_quad <= en_quad_in;
tx_done <= (counter_next == (counter_trgt -1)) && (tx_NS == TRANSMIT);
clk_en_o <= (tx_NS == TRANSMIT);
end
// Counter Exit condition, quad mode div-4 , else actual counter
if (en && data_valid) begin
counter_trgt <= (en_quad_in) ? {2'b00,counter_in[15:2]} : counter_in;
end
end
end
endmodule