blob: 810c836e4e9b17625b7c78fb6ae7c9291ce87cbe [file] [log] [blame]
################################################################################################
# Copyright 2022 GlobalFoundries PDK Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################################
#===========================================================================================================================
#------------------------------------------- GF 0.18um MCU DRC RULE DECK --------------------------------------------------
#===========================================================================================================================
require 'time'
require "logger"
exec_start_time = Time.now
logger = Logger.new(STDOUT)
logger.formatter = proc do |severity, datetime, progname, msg|
"#{datetime}: Memory Usage (" + `pmap #{Process.pid} | tail -1`[10,40].strip + ") : #{msg}
"
end
#================================================
#----------------- FILE SETUP -------------------
#================================================
# optional for a batch launch : klayout -b -r gf_018mcu.drc -rd input=design.gds -rd report=gp180_drc.lyrdb
logger.info("Starting running GF180MCU Klayout DRC runset on %s" % [$input])
logger.info("Ruby Version for klayout: %s" % [RUBY_VERSION])
if $input
if $topcell
source($input, $topcell)
else
source($input)
end
end
if $table_name
table_name = $table_name
else
table_name = "main"
end
logger.info("Loading database to memory is complete.")
if $report
logger.info("GF180MCU Klayout DRC runset output at: %s" % [$report])
report("DRC Run Report at", $report)
else
logger.info("GF180MCU Klayout DRC runset output at default location." % [File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb")])
report("DRC Run Report at", File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb"))
end
#================================================
#------------------ SWITCHES --------------------
#================================================
logger.info("Evaluate switches.")
# connectivity rules
if $conn_drc == "true"
CONNECTIVITY_RULES = $conn_drc
logger.info("connectivity rules are enabled.")
else
CONNECTIVITY_RULES = false
logger.info("connectivity rules are disabled.")
end # connectivity rules
# WEDGE
if $wedge == "false"
WEDGE = $wedge
else
WEDGE = "true"
end # WEDGE
logger.info("Wedge enabled %s" % [WEDGE])
# BALL
if $ball == "false"
BALL = $ball
else
BALL = "true"
end # BALL
logger.info("Ball enabled %s" % [BALL])
# GOLD
if $gold == "false"
GOLD = $gold
else
GOLD = "true"
end # GOLD
logger.info("Gold enabled %s" % [GOLD])
if $mim_option
MIM_OPTION = $mim_option
else
MIM_OPTION = "B"
end
logger.info("MIM Option selected %s" % [MIM_OPTION])
# OFFGRID
if $offgrid == "false"
OFFGRID = false
else
OFFGRID = true
end # OFFGRID
logger.info("Offgrid enabled %s" % [OFFGRID])
if $thr
threads($thr)
logger.info("Number of threads to use %s" % [$thr])
else
threads(%x("nproc"))
logger.info("Number of threads to use #{%x("nproc")}")
end
#=== PRINT DETAILS ===
if $verbose == "true"
logger.info("Verbose mode: #{$verbose}")
verbose(true)
else
verbose(false)
logger.info("Verbose mode: false")
end
# === TILING MODE ===
if $run_mode == "tiling"
tiles(500.um)
tile_borders(10.um)
logger.info("Tiling mode is enabled.")
elsif $run_mode == "deep"
#=== HIER MODE ===
deep
logger.info("deep mode is enabled.")
else
#=== FLAT MODE ===
flat
logger.info("flat mode is enabled.")
end # run_mode
# METAL_TOP
if $metal_top
METAL_TOP = $metal_top
else
METAL_TOP = "9K"
end # METAL_TOP
logger.info("METAL_TOP Selected is %s" % [METAL_TOP])
# METAL_LEVEL
if $metal_level
METAL_LEVEL = $metal_level
else
METAL_LEVEL = "5LM"
end # METAL_LEVEL
logger.info("METAL_STACK Selected is %s" % [METAL_LEVEL])
# FEOL
if $feol == "false"
FEOL = $feol
logger.info("FEOL is disabled.")
else
FEOL = "true"
logger.info("FEOL is enabled.")
end # FEOL
# BEOL
if $beol == "false"
BEOL = $beol
logger.info("BEOL is disabled.")
else
BEOL = "true"
logger.info("BEOL is enabled.")
end # BEOL
#================================================
#------------- LAYERS DEFINITIONS ---------------
#================================================
polygons_count = 0
logger.info("Read in polygons from layers.")
def get_polygons(l, d)
if $run_mode == "deep"
polygons(l, d)
else
polygons(l, d).merged
end
end
comp = get_polygons(22 , 0 )
count = comp.count()
logger.info("comp has %d polygons" % [count])
polygons_count += count
dnwell = get_polygons(12 , 0 )
count = dnwell.count()
logger.info("dnwell has %d polygons" % [count])
polygons_count += count
nwell = get_polygons(21 , 0 )
count = nwell.count()
logger.info("nwell has %d polygons" % [count])
polygons_count += count
lvpwell = get_polygons(204, 0 )
count = lvpwell.count()
logger.info("lvpwell has %d polygons" % [count])
polygons_count += count
dualgate = get_polygons(55 , 0 )
count = dualgate.count()
logger.info("dualgate has %d polygons" % [count])
polygons_count += count
poly2 = get_polygons(30 , 0 )
count = poly2.count()
logger.info("poly2 has %d polygons" % [count])
polygons_count += count
nplus = get_polygons(32 , 0 )
count = nplus.count()
logger.info("nplus has %d polygons" % [count])
polygons_count += count
pplus = get_polygons(31 , 0 )
count = pplus.count()
logger.info("pplus has %d polygons" % [count])
polygons_count += count
sab = get_polygons(49 , 0 )
count = sab.count()
logger.info("sab has %d polygons" % [count])
polygons_count += count
esd = get_polygons(24 , 0 )
count = esd.count()
logger.info("esd has %d polygons" % [count])
polygons_count += count
resistor = get_polygons(62 , 0 )
count = resistor.count()
logger.info("resistor has %d polygons" % [count])
polygons_count += count
fhres = get_polygons(227, 0 )
count = fhres.count()
logger.info("fhres has %d polygons" % [count])
polygons_count += count
fusetop = get_polygons(75 , 0 )
count = fusetop.count()
logger.info("fusetop has %d polygons" % [count])
polygons_count += count
fusewindow_d = get_polygons(96 , 1 )
count = fusewindow_d.count()
logger.info("fusewindow_d has %d polygons" % [count])
polygons_count += count
polyfuse = get_polygons(220, 0 )
count = polyfuse.count()
logger.info("polyfuse has %d polygons" % [count])
polygons_count += count
mvsd = get_polygons(210, 0 )
count = mvsd.count()
logger.info("mvsd has %d polygons" % [count])
polygons_count += count
mvpsd = get_polygons(11 , 39)
count = mvpsd.count()
logger.info("mvpsd has %d polygons" % [count])
polygons_count += count
nat = get_polygons(5 , 0 )
count = nat.count()
logger.info("nat has %d polygons" % [count])
polygons_count += count
comp_dummy = get_polygons(22 , 4 )
count = comp_dummy.count()
logger.info("comp_dummy has %d polygons" % [count])
polygons_count += count
poly2_dummy = get_polygons(30 , 4 )
count = poly2_dummy.count()
logger.info("poly2_dummy has %d polygons" % [count])
polygons_count += count
schottky_diode = get_polygons(241, 0 )
count = schottky_diode.count()
logger.info("schottky_diode has %d polygons" % [count])
polygons_count += count
zener = get_polygons(178, 0 )
count = zener.count()
logger.info("zener has %d polygons" % [count])
polygons_count += count
res_mk = get_polygons(110, 5 )
count = res_mk.count()
logger.info("res_mk has %d polygons" % [count])
polygons_count += count
opc_drc = get_polygons(124, 5 )
count = opc_drc.count()
logger.info("opc_drc has %d polygons" % [count])
polygons_count += count
ndmy = get_polygons(111, 5 )
count = ndmy.count()
logger.info("ndmy has %d polygons" % [count])
polygons_count += count
pmndmy = get_polygons(152, 5 )
count = pmndmy.count()
logger.info("pmndmy has %d polygons" % [count])
polygons_count += count
v5_xtor = get_polygons(112, 1 )
count = v5_xtor.count()
logger.info("v5_xtor has %d polygons" % [count])
polygons_count += count
cap_mk = get_polygons(117, 5 )
count = cap_mk.count()
logger.info("cap_mk has %d polygons" % [count])
polygons_count += count
mos_cap_mk = get_polygons(166, 5 )
count = mos_cap_mk.count()
logger.info("mos_cap_mk has %d polygons" % [count])
polygons_count += count
ind_mk = get_polygons(151, 5 )
count = ind_mk.count()
logger.info("ind_mk has %d polygons" % [count])
polygons_count += count
diode_mk = get_polygons(115, 5 )
count = diode_mk.count()
logger.info("diode_mk has %d polygons" % [count])
polygons_count += count
drc_bjt = get_polygons(127, 5 )
count = drc_bjt.count()
logger.info("drc_bjt has %d polygons" % [count])
polygons_count += count
lvs_bjt = get_polygons(118, 5 )
count = lvs_bjt.count()
logger.info("lvs_bjt has %d polygons" % [count])
polygons_count += count
mim_l_mk = get_polygons(117, 10)
count = mim_l_mk.count()
logger.info("mim_l_mk has %d polygons" % [count])
polygons_count += count
latchup_mk = get_polygons(137, 5 )
count = latchup_mk.count()
logger.info("latchup_mk has %d polygons" % [count])
polygons_count += count
guard_ring_mk = get_polygons(167, 5 )
count = guard_ring_mk.count()
logger.info("guard_ring_mk has %d polygons" % [count])
polygons_count += count
otp_mk = get_polygons(173, 5 )
count = otp_mk.count()
logger.info("otp_mk has %d polygons" % [count])
polygons_count += count
mtpmark = get_polygons(122, 5 )
count = mtpmark.count()
logger.info("mtpmark has %d polygons" % [count])
polygons_count += count
neo_ee_mk = get_polygons(88 , 17)
count = neo_ee_mk.count()
logger.info("neo_ee_mk has %d polygons" % [count])
polygons_count += count
sramcore = get_polygons(108, 5 )
count = sramcore.count()
logger.info("sramcore has %d polygons" % [count])
polygons_count += count
lvs_rf = get_polygons(100, 5 )
count = lvs_rf.count()
logger.info("lvs_rf has %d polygons" % [count])
polygons_count += count
lvs_drain = get_polygons(100, 7 )
count = lvs_drain.count()
logger.info("lvs_drain has %d polygons" % [count])
polygons_count += count
ind_mk = get_polygons(151, 5 )
count = ind_mk.count()
logger.info("ind_mk has %d polygons" % [count])
polygons_count += count
hvpolyrs = get_polygons(123, 5 )
count = hvpolyrs.count()
logger.info("hvpolyrs has %d polygons" % [count])
polygons_count += count
lvs_io = get_polygons(119, 5 )
count = lvs_io.count()
logger.info("lvs_io has %d polygons" % [count])
polygons_count += count
probe_mk = get_polygons(13 , 17)
count = probe_mk.count()
logger.info("probe_mk has %d polygons" % [count])
polygons_count += count
esd_mk = get_polygons(24 , 5 )
count = esd_mk.count()
logger.info("esd_mk has %d polygons" % [count])
polygons_count += count
lvs_source = get_polygons(100, 8 )
count = lvs_source.count()
logger.info("lvs_source has %d polygons" % [count])
polygons_count += count
well_diode_mk = get_polygons(153, 51)
count = well_diode_mk.count()
logger.info("well_diode_mk has %d polygons" % [count])
polygons_count += count
ldmos_xtor = get_polygons(226, 0 )
count = ldmos_xtor.count()
logger.info("ldmos_xtor has %d polygons" % [count])
polygons_count += count
plfuse = get_polygons(125, 5 )
count = plfuse.count()
logger.info("plfuse has %d polygons" % [count])
polygons_count += count
efuse_mk = get_polygons(80 , 5 )
count = efuse_mk.count()
logger.info("efuse_mk has %d polygons" % [count])
polygons_count += count
mcell_feol_mk = get_polygons(11 , 17)
count = mcell_feol_mk.count()
logger.info("mcell_feol_mk has %d polygons" % [count])
polygons_count += count
ymtp_mk = get_polygons(86 , 17)
count = ymtp_mk.count()
logger.info("ymtp_mk has %d polygons" % [count])
polygons_count += count
dev_wf_mk = get_polygons(128, 17)
count = dev_wf_mk.count()
logger.info("dev_wf_mk has %d polygons" % [count])
polygons_count += count
comp_label = get_polygons(22 , 10)
count = comp_label.count()
logger.info("comp_label has %d polygons" % [count])
polygons_count += count
poly2_label = get_polygons(30 , 10)
count = poly2_label.count()
logger.info("poly2_label has %d polygons" % [count])
polygons_count += count
mdiode = get_polygons(116, 5 )
count = mdiode.count()
logger.info("mdiode has %d polygons" % [count])
polygons_count += count
contact = get_polygons(33 , 0 )
count = contact.count()
logger.info("contact has %d polygons" % [count])
polygons_count += count
metal1_drawn = get_polygons(34 , 0 )
count = metal1_drawn.count()
logger.info("metal1_drawn has %d polygons" % [count])
polygons_count += count
metal1_dummy = get_polygons(34 , 4 )
count = metal1_dummy.count()
logger.info("metal1_dummy has %d polygons" % [count])
polygons_count += count
metal1 = metal1_drawn + metal1_dummy
metal1_label = get_polygons(34 , 10)
count = metal1_label.count()
logger.info("metal1_label has %d polygons" % [count])
polygons_count += count
metal1_slot = get_polygons(34 , 3 )
count = metal1_slot.count()
logger.info("metal1_slot has %d polygons" % [count])
polygons_count += count
metal1_blk = get_polygons(34 , 5 )
count = metal1_blk.count()
logger.info("metal1_blk has %d polygons" % [count])
polygons_count += count
via1 = get_polygons(35 , 0 )
count = via1.count()
logger.info("via1 has %d polygons" % [count])
polygons_count += count
if METAL_LEVEL == "2LM"
metal2_drawn = get_polygons(36 , 0 )
count = metal2_drawn.count()
logger.info("metal2_drawn has %d polygons" % [count])
polygons_count += count
metal2_dummy = get_polygons(36 , 4 )
count = metal2_dummy.count()
logger.info("metal2_dummy has %d polygons" % [count])
polygons_count += count
metal2 = metal2_drawn + metal2_drawn
metal2_label = get_polygons(36 , 10)
count = metal2_label.count()
logger.info("metal2_label has %d polygons" % [count])
polygons_count += count
metal2_slot = get_polygons(36 , 3 )
count = metal2_slot.count()
logger.info("metal2_slot has %d polygons" % [count])
polygons_count += count
metal2_blk = get_polygons(36 , 5 )
count = metal2_blk.count()
logger.info("metal2_blk has %d polygons" % [count])
polygons_count += count
top_via = via1
topmin1_via = contact
top_metal = metal2
topmin1_metal = metal1
else
metal2_drawn = get_polygons(36 , 0 )
count = metal2_drawn.count()
logger.info("metal2_drawn has %d polygons" % [count])
polygons_count += count
metal2_dummy = get_polygons(36 , 4 )
count = metal2_dummy.count()
logger.info("metal2_dummy has %d polygons" % [count])
polygons_count += count
metal2 = metal2_drawn + metal2_dummy
metal2_label = get_polygons(36 , 10)
count = metal2_label.count()
logger.info("metal2_label has %d polygons" % [count])
polygons_count += count
metal2_slot = get_polygons(36 , 3 )
count = metal2_slot.count()
logger.info("metal2_slot has %d polygons" % [count])
polygons_count += count
metal2_blk = get_polygons(36 , 5 )
count = metal2_blk.count()
logger.info("metal2_blk has %d polygons" % [count])
polygons_count += count
via2 = get_polygons(38 , 0 )
count = via2.count()
logger.info("via2 has %d polygons" % [count])
polygons_count += count
if METAL_LEVEL == "3LM"
metal3_drawn = get_polygons(42 , 0 )
count = metal3_drawn.count()
logger.info("metal3_drawn has %d polygons" % [count])
polygons_count += count
metal3_dummy = get_polygons(42 , 4 )
count = metal3_dummy.count()
logger.info("metal3_dummy has %d polygons" % [count])
polygons_count += count
metal3 = metal3_drawn + metal3_dummy
metal3_label = get_polygons(42 , 10)
count = metal3_label.count()
logger.info("metal3_label has %d polygons" % [count])
polygons_count += count
metal3_slot = get_polygons(42 , 3 )
count = metal3_slot.count()
logger.info("metal3_slot has %d polygons" % [count])
polygons_count += count
metal3_blk = get_polygons(42 , 5 )
count = metal3_blk.count()
logger.info("metal3_blk has %d polygons" % [count])
polygons_count += count
top_via = via2
topmin1_via = via1
top_metal = metal3
topmin1_metal = metal2
else
metal3_drawn = get_polygons(42 , 0 )
count = metal3_drawn.count()
logger.info("metal3_drawn has %d polygons" % [count])
polygons_count += count
metal3_dummy = get_polygons(42 , 4 )
count = metal3_dummy.count()
logger.info("metal3_dummy has %d polygons" % [count])
polygons_count += count
metal3 = metal3_drawn + metal3_dummy
metal3_label = get_polygons(42 , 10)
count = metal3_label.count()
logger.info("metal3_label has %d polygons" % [count])
polygons_count += count
metal3_slot = get_polygons(42 , 3 )
count = metal3_slot.count()
logger.info("metal3_slot has %d polygons" % [count])
polygons_count += count
metal3_blk = get_polygons(42 , 5 )
count = metal3_blk.count()
logger.info("metal3_blk has %d polygons" % [count])
polygons_count += count
via3 = get_polygons(40 , 0 )
if METAL_LEVEL == "4LM"
metal4_drawn = get_polygons(46 , 0 )
count = metal4_drawn.count()
logger.info("metal4_drawn has %d polygons" % [count])
polygons_count += count
metal4_dummy = get_polygons(46 , 4 )
count = metal4_dummy.count()
logger.info("metal4_dummy has %d polygons" % [count])
polygons_count += count
metal4 = metal4_drawn + metal4_dummy
metal4_label = get_polygons(46 , 10)
count = metal4_label.count()
logger.info("metal4_label has %d polygons" % [count])
polygons_count += count
metal4_slot = get_polygons(46 , 3 )
count = metal4_slot.count()
logger.info("metal4_slot has %d polygons" % [count])
polygons_count += count
metal4_blk = get_polygons(46 , 5 )
count = metal4_blk.count()
logger.info("metal4_blk has %d polygons" % [count])
polygons_count += count
top_via = via3
topmin1_via = via2
top_metal = metal4
topmin1_metal = metal3
else
metal4_drawn = get_polygons(46 , 0 )
count = metal4_drawn.count()
logger.info("metal4_drawn has %d polygons" % [count])
polygons_count += count
metal4_dummy = get_polygons(46 , 4 )
count = metal4_dummy.count()
logger.info("metal4_dummy has %d polygons" % [count])
polygons_count += count
metal4 = metal4_drawn + metal4_dummy
metal4_label = get_polygons(46 , 10)
count = metal4_label.count()
logger.info("metal4_label has %d polygons" % [count])
polygons_count += count
metal4_slot = get_polygons(46 , 3 )
count = metal4_slot.count()
logger.info("metal4_slot has %d polygons" % [count])
polygons_count += count
metal4_blk = get_polygons(46 , 5 )
count = metal4_blk.count()
logger.info("metal4_blk has %d polygons" % [count])
polygons_count += count
via4 = get_polygons(41 , 0 )
count = via4.count()
logger.info("via4 has %d polygons" % [count])
polygons_count += count
if METAL_LEVEL == "5LM"
metal5_drawn = get_polygons(81 , 0 )
count = metal5_drawn.count()
logger.info("metal5_drawn has %d polygons" % [count])
polygons_count += count
metal5_dummy = get_polygons(81 , 4 )
count = metal5_dummy.count()
logger.info("metal5_dummy has %d polygons" % [count])
polygons_count += count
metal5 = metal5_drawn + metal5_dummy
metal5_label = get_polygons(81 , 10)
count = metal5_label.count()
logger.info("metal5_label has %d polygons" % [count])
polygons_count += count
metal5_slot = get_polygons(81 , 3 )
count = metal5_slot.count()
logger.info("metal5_slot has %d polygons" % [count])
polygons_count += count
metal5_blk = get_polygons(81 , 5 )
count = metal5_blk.count()
logger.info("metal5_blk has %d polygons" % [count])
polygons_count += count
top_via = via4
topmin1_via = via3
top_metal = metal5
topmin1_metal = metal4
else
## 6LM
metal5_drawn = get_polygons(81 , 0 )
count = metal5_drawn.count()
logger.info("metal5_drawn has %d polygons" % [count])
polygons_count += count
metal5_dummy = get_polygons(81 , 4 )
count = metal5_dummy.count()
logger.info("metal5_dummy has %d polygons" % [count])
polygons_count += count
metal5 = metal5_drawn + metal5_dummy
metal5_label = get_polygons(81 , 10)
count = metal5_label.count()
logger.info("metal5_label has %d polygons" % [count])
polygons_count += count
metal5_slot = get_polygons(81 , 3 )
count = metal5_slot.count()
logger.info("metal5_slot has %d polygons" % [count])
polygons_count += count
metal5_blk = get_polygons(81 , 5 )
count = metal5_blk.count()
logger.info("metal5_blk has %d polygons" % [count])
polygons_count += count
via5 = get_polygons(82 , 0 )
count = via5.count()
logger.info("via5 has %d polygons" % [count])
polygons_count += count
metaltop_drawn = get_polygons(53 , 0 )
count = metaltop_drawn.count()
logger.info("metaltop_drawn has %d polygons" % [count])
polygons_count += count
metaltop_dummy = get_polygons(53 , 4 )
count = metaltop_dummy.count()
logger.info("metaltop_dummy has %d polygons" % [count])
polygons_count += count
metaltop = metaltop_drawn + metaltop_dummy
metaltop_label = get_polygons(53 , 10)
count = metaltop_label.count()
logger.info("metaltop_label has %d polygons" % [count])
polygons_count += count
metaltop_slot = get_polygons(53 , 3 )
count = metaltop_slot.count()
logger.info("metaltop_slot has %d polygons" % [count])
polygons_count += count
metalt_blk = get_polygons(53 , 5 )
count = metalt_blk.count()
logger.info("metalt_blk has %d polygons" % [count])
polygons_count += count
top_via = via5
topmin1_via = via4
top_metal = metaltop
topmin1_metal = metal5
end
end
end
end
pad = get_polygons(37 , 0 )
count = pad.count()
logger.info("pad has %d polygons" % [count])
polygons_count += count
ubmpperi = get_polygons(183, 0 )
count = ubmpperi.count()
logger.info("ubmpperi has %d polygons" % [count])
polygons_count += count
ubmparray = get_polygons(184, 0 )
count = ubmparray.count()
logger.info("ubmparray has %d polygons" % [count])
polygons_count += count
ubmeplate = get_polygons(185, 0 )
count = ubmeplate.count()
logger.info("ubmeplate has %d polygons" % [count])
polygons_count += count
metal1_res = get_polygons(110, 11)
count = metal1_res.count()
logger.info("metal1_res has %d polygons" % [count])
polygons_count += count
metal2_res = get_polygons(110, 12)
count = metal2_res.count()
logger.info("metal2_res has %d polygons" % [count])
polygons_count += count
metal3_res = get_polygons(110, 13)
count = metal3_res.count()
logger.info("metal3_res has %d polygons" % [count])
polygons_count += count
metal4_res = get_polygons(110, 14)
count = metal4_res.count()
logger.info("metal4_res has %d polygons" % [count])
polygons_count += count
metal5_res = get_polygons(110, 15)
count = metal5_res.count()
logger.info("metal5_res has %d polygons" % [count])
polygons_count += count
metal6_res = get_polygons(110, 16)
count = metal6_res.count()
logger.info("metal6_res has %d polygons" % [count])
polygons_count += count
pr_bndry = get_polygons(0 , 0 )
count = pr_bndry.count()
logger.info("pr_bndry has %d polygons" % [count])
polygons_count += count
border = get_polygons(63 , 0 )
count = border.count()
logger.info("border has %d polygons" % [count])
polygons_count += count
logger.info("Total no. of polygons in the design is #{polygons_count}")
logger.info("Starting deriving base layers.")
#=====================================================
#------------- BASE LAYERS DERIVATIONS ---------------
#=====================================================
ncomp = comp & nplus
pcomp = comp & pplus
tgate = poly2 & comp
ngate = nplus & tgate
pgate = pplus & tgate
natcompsd = (nat & comp.interacting(poly2)) - tgate
nom_gate = tgate.not(dualgate)
thick_gate = tgate.and(dualgate)
ngate_56V = ngate.and(dualgate)
pgate_56V = pgate.and(dualgate)
ngate_5V = ngate_56V.and(v5_xtor)
pgate_5V = pgate_56V.and(v5_xtor)
ngate_6V = ngate_56V.not(v5_xtor)
pgate_6V = pgate_56V.not(v5_xtor)
lvpwell_dn = lvpwell.interacting(dnwell)
lvpwell_out = lvpwell.not_interacting(dnwell)
#================================================
#------------- LAYERS CONNECTIONS ---------------
#================================================
if CONNECTIVITY_RULES
logger.info("Construct connectivity for the design.")
connect(dnwell, ncomp)
connect(ncomp, contact)
connect(pcomp, contact)
connect(lvpwell_out, pcomp)
connect(lvpwell_dn, pcomp)
connect(nwell, ncomp)
connect(natcompsd, contact)
connect(mvsd, ncomp)
connect(mvpsd, pcomp)
connect(contact, metal1)
connect(metal1, via1)
connect(via1, metal2)
if METAL_LEVEL != "2LM"
connect(metal2, via2)
connect(via2, metal3)
if METAL_LEVEL != "3LM"
connect(metal3, via3)
connect(via3, metal4)
if METAL_LEVEL != "4LM"
connect(metal4, via4)
connect(via4, metal5)
if METAL_LEVEL != "5LM"
connect(metal5, via5)
connect(via5, metaltop)
end
end
end
end
end #CONNECTIVITY_RULES
#================================================
#------------ PRE-DEFINED FUNCTIONS -------------
#================================================
def conn_space(layer,conn_val,not_conn_val, mode)
if conn_val > not_conn_val
raise "ERROR : Wrong connectivity implementation"
end
connected_output = layer.space(conn_val.um, mode).polygons(0.001)
unconnected_errors_unfiltered = layer.space(not_conn_val.um, mode)
singularity_errors = layer.space(0.001.um)
# Filter out the errors arising from the same net
unconnected_errors = DRC::DRCLayer::new(self, RBA::EdgePairs::new)
unconnected_errors_unfiltered.data.each do |ep|
net1 = l2n_data.probe_net(layer.data, ep.first.p1)
net2 = l2n_data.probe_net(layer.data, ep.second.p1)
if !net1 || !net2
puts "Should not happen ..."
elsif net1.circuit != net2.circuit || net1.cluster_id != net2.cluster_id
# unconnected
unconnected_errors.data.insert(ep)
end
end
unconnected_output = unconnected_errors.polygons.or(singularity_errors.polygons(0.001))
return connected_output, unconnected_output
end
def conn_separation(layer1, layer2, conn_val,not_conn_val, mode)
if conn_val > not_conn_val
raise "ERROR : Wrong connectivity implementation"
end
connected_output = layer1.separation(layer2, conn_val.um, mode).polygons(0.001)
unconnected_errors_unfiltered = layer1.separation(layer2, not_conn_val.um, mode)
# Filter out the errors arising from the same net
unconnected_errors = DRC::DRCLayer::new(self, RBA::EdgePairs::new)
unconnected_errors_unfiltered.data.each do |ep|
net1 = l2n_data.probe_net(layer1.data, ep.first.p1)
net2 = l2n_data.probe_net(layer2.data, ep.second.p1)
if !net1 || !net2
puts "Should not happen ..."
elsif net1.circuit != net2.circuit || net1.cluster_id != net2.cluster_id
# unconnected
unconnected_errors.data.insert(ep)
end
end
unconnected_output = unconnected_errors.polygons(0.001)
return connected_output, unconnected_output
end
# === IMPLICIT EXTRACTION ===
if CONNECTIVITY_RULES
logger.info("Connectivity rules enabled, Netlist object will be generated.")
netlist
end #CONNECTIVITY_RULES
# === LAYOUT EXTENT ===
CHIP = extent.sized(0.0)
logger.info("Total area of the design is #{CHIP.area()} um^2.")
#================================================
#----------------- MAIN RUNSET ------------------
#================================================
logger.info("Starting GF180MCU DRC rules.")
if FEOL
logger.info("Running all FEOL rules")
end #FEOL
if BEOL
logger.info("Running all BEOL rules")
end #BEOL
################################################################################################
# Copyright 2022 GlobalFoundries PDK Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################################
if FEOL
#================================================
#----------------------COMP----------------------
#================================================
# Rule DF.1a_3.3V: Min. COMP Width. is 0.22µm
logger.info("Executing rule DF.1a_3.3V")
df1a_l1 = comp.width(0.22.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df1a_l1.output("DF.1a_3.3V", "DF.1a_3.3V : Min. COMP Width. : 0.22µm")
df1a_l1.forget
# Rule DF.1a_5V: Min. COMP Width. is 0.3µm
logger.info("Executing rule DF.1a_5V")
df1a_l1 = comp.not_inside(mvsd).not_inside(mvpsd).width(0.3.um, euclidian).polygons(0.001).overlapping(dualgate)
df1a_l1.output("DF.1a_5V", "DF.1a_5V : Min. COMP Width. : 0.3µm")
df1a_l1.forget
# rule DF.1b_3.3V is not a DRC check
# rule DF.1b_5V is not a DRC check
# Rule DF.1c_3.3V: Min. COMP Width for MOSCAP. is 1µm
logger.info("Executing rule DF.1c_3.3V")
df1c_l1 = comp.and(mos_cap_mk).width(1.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df1c_l1.output("DF.1c_3.3V", "DF.1c_3.3V : Min. COMP Width for MOSCAP. : 1µm")
df1c_l1.forget
# Rule DF.1c_5V: Min. COMP Width for MOSCAP. is 1µm
logger.info("Executing rule DF.1c_5V")
df1c_l1 = comp.and(mos_cap_mk).width(1.um, euclidian).polygons(0.001).overlapping(dualgate)
df1c_l1.output("DF.1c_5V", "DF.1c_5V : Min. COMP Width for MOSCAP. : 1µm")
df1c_l1.forget
df_2a = comp.not(poly2).edges.and(tgate.edges)
# Rule DF.2a_3.3V: Min Channel Width. is nil,0.22µm
logger.info("Executing rule DF.2a_3.3V")
df2a_l1 = df_2a.with_length(nil,0.22.um).extended(0, 0, 0.001, 0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df2a_l1.output("DF.2a_3.3V", "DF.2a_3.3V : Min Channel Width. : nil,0.22µm")
df2a_l1.forget
# Rule DF.2a_5V: Min Channel Width. is nil,0.3µm
logger.info("Executing rule DF.2a_5V")
df2a_l1 = df_2a.with_length(nil,0.3.um).extended(0, 0, 0.001, 0.001).overlapping(dualgate)
df2a_l1.output("DF.2a_5V", "DF.2a_5V : Min Channel Width. : nil,0.3µm")
df2a_l1.forget
df_2a.forget
df_2b = comp.width(100.um + 1.dbu).polygons(0.001).not_inside(mos_cap_mk)
# Rule DF.2b_3.3V: Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.
logger.info("Executing rule DF.2b_3.3V")
df2b_l1 = comp.not_inside(mos_cap_mk).not_interacting(df_2b).not_interacting(v5_xtor).not_interacting(dualgate)
df2b_l1.output("DF.2b_3.3V", "DF.2b_3.3V : Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.")
df2b_l1.forget
# Rule DF.2b_5V: Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.
logger.info("Executing rule DF.2b_5V")
df2b_l1 = comp.not_inside(mos_cap_mk).not_interacting(df_2b).overlapping(dualgate)
df2b_l1.output("DF.2b_5V", "DF.2b_5V : Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.")
df2b_l1.forget
df_2b.forget
# Rule DF.3a_3.3V: Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. is 0.28µm
logger.info("Executing rule DF.3a_3.3V")
df3a_l1 = comp.not(otp_mk).space(0.28.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df3a_l1.output("DF.3a_3.3V", "DF.3a_3.3V : Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. : 0.28µm")
df3a_l1.forget
# Rule DF.3a_5V: Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. is 0.36µm
logger.info("Executing rule DF.3a_5V")
df3a_l1 = comp.not(otp_mk).space(0.36.um, euclidian).polygons(0.001).overlapping(dualgate)
df3a_l1.output("DF.3a_5V", "DF.3a_5V : Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. : 0.36µm")
df3a_l1.forget
df_3b_same_well = ncomp.inside(nwell).not_outside(pcomp.inside(nwell)).or(ncomp.inside(lvpwell).not_outside(pcomp.inside(lvpwell)))
df_3b_moscap = ncomp.inside(nwell).interacting(pcomp.inside(nwell)).or(ncomp.inside(lvpwell).interacting(pcomp.inside(lvpwell))).inside(mos_cap_mk)
# Rule DF.3b_3.3V: Min./Max. NCOMP Space to PCOMP in the same well for butted COMP (MOSCAP butting is not allowed).
logger.info("Executing rule DF.3b_3.3V")
df3b_l1 = df_3b_same_well.or(df_3b_moscap).not_interacting(v5_xtor).not_interacting(dualgate)
df3b_l1.output("DF.3b_3.3V", "DF.3b_3.3V : Min./Max. NCOMP Space to PCOMP in the same well for butted COMP (MOSCAP butting is not allowed).")
df3b_l1.forget
# Rule DF.3b_5V: Min./Max. NCOMP Space to PCOMP in the same well for butted COMP(MOSCAP butting is not allowed).
logger.info("Executing rule DF.3b_5V")
df3b_l1 = df_3b_same_well.or(df_3b_moscap).overlapping(dualgate)
df3b_l1.output("DF.3b_5V", "DF.3b_5V : Min./Max. NCOMP Space to PCOMP in the same well for butted COMP(MOSCAP butting is not allowed).")
df3b_l1.forget
df_3b_same_well.forget
df_3b_moscap.forget
# Rule DF.3c_3.3V: Min. COMP Space in BJT area (area marked by DRC_BJT layer). is 0.32µm
logger.info("Executing rule DF.3c_3.3V")
df3c_l1 = comp.inside(drc_bjt).space(0.32.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df3c_l1.output("DF.3c_3.3V", "DF.3c_3.3V : Min. COMP Space in BJT area (area marked by DRC_BJT layer). : 0.32µm")
df3c_l1.forget
# Rule DF.3c_5V: Min. COMP Space in BJT area (area marked by DRC_BJT layer) hasn’t been assessed.
logger.info("Executing rule DF.3c_5V")
df3c_l1 = comp.interacting(comp.inside(drc_bjt).and(dualgate).space(10.um, euclidian).polygons(0.001))
df3c_l1.output("DF.3c_5V", "DF.3c_5V : Min. COMP Space in BJT area (area marked by DRC_BJT layer) hasn’t been assessed.")
df3c_l1.forget
ntap_dnwell = ncomp.not_interacting(tgate).inside(dnwell)
# Rule DF.4a_3.3V: Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. is 0.12µm
logger.info("Executing rule DF.4a_3.3V")
df4a_l1 = ntap_dnwell.separation(lvpwell.inside(dnwell), 0.12.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df4a_l1.output("DF.4a_3.3V", "DF.4a_3.3V : Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. : 0.12µm")
df4a_l1.forget
# Rule DF.4a_5V: Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. is 0.16µm
logger.info("Executing rule DF.4a_5V")
df4a_l1 = ntap_dnwell.separation(lvpwell.inside(dnwell), 0.16.um, euclidian).polygons(0.001).overlapping(dualgate)
df4a_l1.output("DF.4a_5V", "DF.4a_5V : Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. : 0.16µm")
df4a_l1.forget
# Rule DF.4b_3.3V: Min. DNWELL overlap of NCOMP well tap. is 0.62µm
logger.info("Executing rule DF.4b_3.3V")
df4b_l1 = dnwell.enclosing(ncomp.not_interacting(tgate), 0.62.um, euclidian).polygons(0.001)
df4b_l2 = ncomp.not_interacting(tgate).not_outside(dnwell).not(dnwell)
df4b_l = df4b_l1.or(df4b_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df4b_l.output("DF.4b_3.3V", "DF.4b_3.3V : Min. DNWELL overlap of NCOMP well tap. : 0.62µm")
df4b_l1.forget
df4b_l2.forget
df4b_l.forget
# Rule DF.4b_5V: Min. DNWELL overlap of NCOMP well tap. is 0.66µm
logger.info("Executing rule DF.4b_5V")
df4b_l1 = dnwell.enclosing(ncomp.not_interacting(tgate), 0.66.um, euclidian).polygons(0.001)
df4b_l2 = ncomp.not_interacting(tgate).not_outside(dnwell).not(dnwell)
df4b_l = df4b_l1.or(df4b_l2).overlapping(dualgate)
df4b_l.output("DF.4b_5V", "DF.4b_5V : Min. DNWELL overlap of NCOMP well tap. : 0.66µm")
df4b_l1.forget
df4b_l2.forget
df4b_l.forget
ntap_dnwell.forget
nwell_n_dnwell = nwell.outside(dnwell)
# Rule DF.4c_3.3V: Min. (Nwell overlap of PCOMP) outside DNWELL. is 0.43µm
logger.info("Executing rule DF.4c_3.3V")
df4c_l1 = nwell_n_dnwell.outside(sramcore).enclosing(pcomp.outside(dnwell), 0.43.um, euclidian).polygons(0.001)
df4c_l2 = pcomp.outside(dnwell).not_outside(nwell_n_dnwell.outside(sramcore)).not(nwell_n_dnwell.outside(sramcore))
df4c_l = df4c_l1.or(df4c_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df4c_l.output("DF.4c_3.3V", "DF.4c_3.3V : Min. (Nwell overlap of PCOMP) outside DNWELL. : 0.43µm")
df4c_l1.forget
df4c_l2.forget
df4c_l.forget
# Rule DF.4c_5V: Min. (Nwell overlap of PCOMP) outside DNWELL. is 0.6µm
logger.info("Executing rule DF.4c_5V")
df4c_l1 = nwell_n_dnwell.outside(sramcore).enclosing(pcomp.outside(dnwell), 0.6.um, euclidian).polygons(0.001)
df4c_l2 = pcomp.outside(dnwell).not_outside(nwell_n_dnwell.outside(sramcore)).not(nwell_n_dnwell.outside(sramcore))
df4c_l = df4c_l1.or(df4c_l2).overlapping(dualgate)
df4c_l.output("DF.4c_5V", "DF.4c_5V : Min. (Nwell overlap of PCOMP) outside DNWELL. : 0.6µm")
df4c_l1.forget
df4c_l2.forget
df4c_l.forget
# Rule DF.4d_3.3V: Min. (Nwell overlap of NCOMP) outside DNWELL. is 0.12µm
logger.info("Executing rule DF.4d_3.3V")
df4d_l1 = nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk).enclosing(ncomp.outside(dnwell).not_inside(ymtp_mk), 0.12.um, euclidian).polygons(0.001)
df4d_l2 = ncomp.outside(dnwell).not_inside(ymtp_mk).not_outside(nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk)).not(nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk))
df4d_l = df4d_l1.or(df4d_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df4d_l.output("DF.4d_3.3V", "DF.4d_3.3V : Min. (Nwell overlap of NCOMP) outside DNWELL. : 0.12µm")
df4d_l1.forget
df4d_l2.forget
df4d_l.forget
# Rule DF.4d_5V: Min. (Nwell overlap of NCOMP) outside DNWELL. is 0.16µm
logger.info("Executing rule DF.4d_5V")
df4d_l1 = nwell_n_dnwell.not_inside(ymtp_mk).enclosing(ncomp.outside(dnwell).not_inside(ymtp_mk), 0.16.um, euclidian).polygons(0.001)
df4d_l2 = ncomp.outside(dnwell).not_inside(ymtp_mk).not_outside(nwell_n_dnwell.not_inside(ymtp_mk)).not(nwell_n_dnwell.not_inside(ymtp_mk))
df4d_l = df4d_l1.or(df4d_l2).overlapping(dualgate)
df4d_l.output("DF.4d_5V", "DF.4d_5V : Min. (Nwell overlap of NCOMP) outside DNWELL. : 0.16µm")
df4d_l1.forget
df4d_l2.forget
df4d_l.forget
nwell_n_dnwell.forget
# Rule DF.4e_3.3V: Min. DNWELL overlap of PCOMP. is 0.93µm
logger.info("Executing rule DF.4e_3.3V")
df4e_l1 = dnwell.enclosing(pcomp, 0.93.um, euclidian).polygons(0.001)
df4e_l2 = pcomp.not_outside(dnwell).not(dnwell)
df4e_l = df4e_l1.or(df4e_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df4e_l.output("DF.4e_3.3V", "DF.4e_3.3V : Min. DNWELL overlap of PCOMP. : 0.93µm")
df4e_l1.forget
df4e_l2.forget
df4e_l.forget
# Rule DF.4e_5V: Min. DNWELL overlap of PCOMP. is 1.1µm
logger.info("Executing rule DF.4e_5V")
df4e_l1 = dnwell.enclosing(pcomp, 1.1.um, euclidian).polygons(0.001)
df4e_l2 = pcomp.not_outside(dnwell).not(dnwell)
df4e_l = df4e_l1.or(df4e_l2).overlapping(dualgate)
df4e_l.output("DF.4e_5V", "DF.4e_5V : Min. DNWELL overlap of PCOMP. : 1.1µm")
df4e_l1.forget
df4e_l2.forget
df4e_l.forget
pwell_dnwell = lvpwell.inside(dnwell)
# Rule DF.5_3.3V: Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. is 0.12µm
logger.info("Executing rule DF.5_3.3V")
df5_l1 = pwell_dnwell.enclosing(pcomp.outside(nwell), 0.12.um, euclidian).polygons(0.001)
df5_l2 = pcomp.outside(nwell).not_outside(pwell_dnwell).not(pwell_dnwell)
df5_l = df5_l1.or(df5_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df5_l.output("DF.5_3.3V", "DF.5_3.3V : Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. : 0.12µm")
df5_l1.forget
df5_l2.forget
df5_l.forget
# Rule DF.5_5V: Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. is 0.16µm
logger.info("Executing rule DF.5_5V")
df5_l1 = pwell_dnwell.enclosing(pcomp.outside(nwell), 0.16.um, euclidian).polygons(0.001)
df5_l2 = pcomp.outside(nwell).not_outside(pwell_dnwell).not(pwell_dnwell)
df5_l = df5_l1.or(df5_l2).overlapping(dualgate)
df5_l.output("DF.5_5V", "DF.5_5V : Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. : 0.16µm")
df5_l1.forget
df5_l2.forget
df5_l.forget
# Rule DF.6_3.3V: Min. COMP extend beyond gate (it also means source/drain overhang). is 0.24µm
logger.info("Executing rule DF.6_3.3V")
df6_l1 = comp.not(otp_mk).not_inside(ymtp_mk).enclosing(poly2.not_inside(ymtp_mk), 0.24.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df6_l1.output("DF.6_3.3V", "DF.6_3.3V : Min. COMP extend beyond gate (it also means source/drain overhang). : 0.24µm")
df6_l1.forget
# Rule DF.6_5V: Min. COMP extend beyond gate (it also means source/drain overhang). is 0.4µm
logger.info("Executing rule DF.6_5V")
df6_l1 = comp.not(otp_mk).not_inside(mvpsd).not_inside(mvsd).not_inside(ymtp_mk).outside(sramcore).enclosing(poly2.not_inside(ymtp_mk), 0.4.um, euclidian).polygons(0.001).overlapping(dualgate)
df6_l1.output("DF.6_5V", "DF.6_5V : Min. COMP extend beyond gate (it also means source/drain overhang). : 0.4µm")
df6_l1.forget
# Rule DF.7_3.3V: Min. (LVPWELL Spacer to PCOMP) inside DNWELL. is 0.43µm
logger.info("Executing rule DF.7_3.3V")
df7_l1 = pcomp.inside(dnwell).separation(pwell_dnwell, 0.43.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df7_l1.output("DF.7_3.3V", "DF.7_3.3V : Min. (LVPWELL Spacer to PCOMP) inside DNWELL. : 0.43µm")
df7_l1.forget
# Rule DF.7_5V: Min. (LVPWELL Spacer to PCOMP) inside DNWELL. is 0.6µm
logger.info("Executing rule DF.7_5V")
df7_l1 = pcomp.inside(dnwell).outside(sramcore).separation(pwell_dnwell, 0.6.um, euclidian).polygons(0.001).overlapping(dualgate)
df7_l1.output("DF.7_5V", "DF.7_5V : Min. (LVPWELL Spacer to PCOMP) inside DNWELL. : 0.6µm")
df7_l1.forget
# Rule DF.8_3.3V: Min. (LVPWELL overlap of NCOMP) Inside DNWELL. is 0.43µm
logger.info("Executing rule DF.8_3.3V")
df8_l1 = pwell_dnwell.enclosing(ncomp.inside(dnwell), 0.43.um, euclidian).polygons(0.001)
df8_l2 = ncomp.inside(dnwell).not_outside(pwell_dnwell).not(pwell_dnwell)
df8_l = df8_l1.or(df8_l2).not_interacting(v5_xtor).not_interacting(dualgate)
df8_l.output("DF.8_3.3V", "DF.8_3.3V : Min. (LVPWELL overlap of NCOMP) Inside DNWELL. : 0.43µm")
df8_l1.forget
df8_l2.forget
df8_l.forget
# Rule DF.8_5V: Min. (LVPWELL overlap of NCOMP) Inside DNWELL. is 0.6µm
logger.info("Executing rule DF.8_5V")
df8_l1 = pwell_dnwell.outside(sramcore).enclosing(ncomp.inside(dnwell), 0.6.um, euclidian).polygons(0.001)
df8_l2 = ncomp.inside(dnwell).not_outside(pwell_dnwell.outside(sramcore)).not(pwell_dnwell.outside(sramcore))
df8_l = df8_l1.or(df8_l2).overlapping(dualgate)
df8_l.output("DF.8_5V", "DF.8_5V : Min. (LVPWELL overlap of NCOMP) Inside DNWELL. : 0.6µm")
df8_l1.forget
df8_l2.forget
df8_l.forget
pwell_dnwell.forget
# Rule DF.9_3.3V: Min. COMP area (um2). is 0.2025µm²
logger.info("Executing rule DF.9_3.3V")
df9_l1 = comp.not(otp_mk).with_area(nil, 0.2025.um).not_interacting(v5_xtor).not_interacting(dualgate)
df9_l1.output("DF.9_3.3V", "DF.9_3.3V : Min. COMP area (um2). : 0.2025µm²")
df9_l1.forget
# Rule DF.9_5V: Min. COMP area (um2). is 0.2025µm²
logger.info("Executing rule DF.9_5V")
df9_l1 = comp.not(otp_mk).with_area(nil, 0.2025.um).overlapping(dualgate)
df9_l1.output("DF.9_5V", "DF.9_5V : Min. COMP area (um2). : 0.2025µm²")
df9_l1.forget
# Rule DF.10_3.3V: Min. field area (um2). is 0.26µm²
logger.info("Executing rule DF.10_3.3V")
df10_l1 = comp.holes.not(comp).with_area(nil, 0.26.um).not_interacting(v5_xtor).not_interacting(dualgate)
df10_l1.output("DF.10_3.3V", "DF.10_3.3V : Min. field area (um2). : 0.26µm²")
df10_l1.forget
# Rule DF.10_5V: Min. field area (um2). is 0.26µm²
logger.info("Executing rule DF.10_5V")
df10_l1 = comp.holes.not(comp).with_area(nil, 0.26.um).overlapping(dualgate)
df10_l1.output("DF.10_5V", "DF.10_5V : Min. field area (um2). : 0.26µm²")
df10_l1.forget
comp_butt = comp.interacting(ncomp.interacting(pcomp).outside(pcomp))
# Rule DF.11_3.3V: Min. Length of butting COMP edge. is 0.3µm
logger.info("Executing rule DF.11_3.3V")
df11_l1 = comp_butt.width(0.3.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df11_l1.output("DF.11_3.3V", "DF.11_3.3V : Min. Length of butting COMP edge. : 0.3µm")
df11_l1.forget
# Rule DF.11_5V: Min. Length of butting COMP edge. is 0.3µm
logger.info("Executing rule DF.11_5V")
df11_l1 = comp_butt.width(0.3.um, euclidian).polygons(0.001).overlapping(dualgate)
df11_l1.output("DF.11_5V", "DF.11_5V : Min. Length of butting COMP edge. : 0.3µm")
df11_l1.forget
comp_butt.forget
# Rule DF.12_3.3V: COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).
logger.info("Executing rule DF.12_3.3V")
df12_l1 = comp.not_interacting(schottky_diode).not_inside(nplus.or(pplus)).not_interacting(v5_xtor).not_interacting(dualgate)
df12_l1.output("DF.12_3.3V", "DF.12_3.3V : COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).")
df12_l1.forget
# Rule DF.12_5V: COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).
logger.info("Executing rule DF.12_5V")
df12_l1 = comp.not_interacting(schottky_diode).not_inside(nplus.or(pplus)).overlapping(dualgate)
df12_l1.output("DF.12_5V", "DF.12_5V : COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).")
df12_l1.forget
df13_ncomp = ncomp.inside(nwell.covering(ncomp).covering(pcomp))
df13_pcomp = pcomp.inside(nwell.covering(ncomp).covering(pcomp))
# Rule DF.13_3.3V: Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).
logger.info("Executing rule DF.13_3.3V")
df13_l1 = df13_ncomp.not_interacting(df13_pcomp.sized(20.um)).not_interacting(v5_xtor).not_interacting(dualgate)
df13_l1.output("DF.13_3.3V", "DF.13_3.3V : Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).")
df13_l1.forget
# Rule DF.13_5V: Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).
logger.info("Executing rule DF.13_5V")
df13_l1 = df13_ncomp.not_interacting(df13_pcomp.sized(15.um)).overlapping(dualgate)
df13_l1.output("DF.13_5V", "DF.13_5V : Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).")
df13_l1.forget
df13_ncomp.forget
df13_pcomp.forget
# Rule DF.14_3.3V: Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).
logger.info("Executing rule DF.14_3.3V")
df14_l1 = pcomp.outside(nwell).not_interacting(ncomp.outside(nwell).sized(20.um)).not_interacting(v5_xtor).not_interacting(dualgate)
df14_l1.output("DF.14_3.3V", "DF.14_3.3V : Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).")
df14_l1.forget
# Rule DF.14_5V: Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).
logger.info("Executing rule DF.14_5V")
df14_l1 = pcomp.outside(nwell).not_interacting(ncomp.outside(nwell).sized(15.um)).overlapping(dualgate)
df14_l1.output("DF.14_5V", "DF.14_5V : Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).")
df14_l1.forget
# rule DF.15a_3.3V is not a DRC check
# rule DF.15a_5V is not a DRC check
# rule DF.15b_3.3V is not a DRC check
# rule DF.15b_5V is not a DRC check
ncomp_df16 = ncomp.outside(nwell).outside(dnwell)
# Rule DF.16_3.3V: Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). is 0.43µm
logger.info("Executing rule DF.16_3.3V")
df16_l1 = ncomp_df16.not_inside(ymtp_mk).outside(sramcore).separation(nwell.outside(dnwell).not_inside(ymtp_mk), 0.43.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df16_l1.output("DF.16_3.3V", "DF.16_3.3V : Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). : 0.43µm")
df16_l1.forget
# Rule DF.16_5V: Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). is 0.6µm
logger.info("Executing rule DF.16_5V")
df16_l1 = ncomp_df16.not_inside(ymtp_mk).outside(sramcore).separation(nwell.outside(dnwell).not_inside(ymtp_mk), 0.6.um, euclidian).polygons(0.001).overlapping(dualgate)
df16_l1.output("DF.16_5V", "DF.16_5V : Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). : 0.6µm")
df16_l1.forget
pcomp_df17 = pcomp.outside(nwell).outside(dnwell)
# Rule DF.17_3.3V: Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). is 0.12µm
logger.info("Executing rule DF.17_3.3V")
df17_l1 = pcomp_df17.separation(nwell.outside(dnwell), 0.12.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df17_l1.output("DF.17_3.3V", "DF.17_3.3V : Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). : 0.12µm")
df17_l1.forget
# Rule DF.17_5V: Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). is 0.16µm
logger.info("Executing rule DF.17_5V")
df17_l1 = pcomp_df17.separation(nwell.outside(dnwell), 0.16.um, euclidian).polygons(0.001).overlapping(dualgate)
df17_l1.output("DF.17_5V", "DF.17_5V : Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). : 0.16µm")
df17_l1.forget
# Rule DF.18_3.3V: Min. DNWELL space to (PCOMP outside Nwell and DNWELL). is 2.5µm
logger.info("Executing rule DF.18_3.3V")
df18_l1 = pcomp_df17.separation(dnwell, 2.5.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df18_l1.output("DF.18_3.3V", "DF.18_3.3V : Min. DNWELL space to (PCOMP outside Nwell and DNWELL). : 2.5µm")
df18_l1.forget
# Rule DF.18_5V: Min. DNWELL space to (PCOMP outside Nwell and DNWELL). is 2.5µm
logger.info("Executing rule DF.18_5V")
df18_l1 = pcomp_df17.separation(dnwell, 2.5.um, euclidian).polygons(0.001).overlapping(dualgate)
df18_l1.output("DF.18_5V", "DF.18_5V : Min. DNWELL space to (PCOMP outside Nwell and DNWELL). : 2.5µm")
df18_l1.forget
pcomp_df17.forget
# Rule DF.19_3.3V: Min. DNWELL space to (NCOMP outside Nwell and DNWELL). is 3.2µm
logger.info("Executing rule DF.19_3.3V")
df19_l1 = ncomp_df16.separation(dnwell, 3.2.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
df19_l1.output("DF.19_3.3V", "DF.19_3.3V : Min. DNWELL space to (NCOMP outside Nwell and DNWELL). : 3.2µm")
df19_l1.forget
# Rule DF.19_5V: Min. DNWELL space to (NCOMP outside Nwell and DNWELL). is 3.28µm
logger.info("Executing rule DF.19_5V")
df19_l1 = ncomp_df16.separation(dnwell, 3.28.um, euclidian).polygons(0.001).overlapping(dualgate)
df19_l1.output("DF.19_5V", "DF.19_5V : Min. DNWELL space to (NCOMP outside Nwell and DNWELL). : 3.28µm")
df19_l1.forget
ncomp_df16.forget
end #FEOL
################################################################################################
# Copyright 2022 GlobalFoundries PDK Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################################
exec_end_time = Time.now
run_time = exec_end_time - exec_start_time
logger.info("%s DRC Total Run time %f seconds" % [table_name, run_time])